
Girls’ Programming Network

Welcome to the Labs!

Tic Tac Toe



Girls’ Programming Network

Thank you to our Sponsors!

Platinum Sponsor:

Gold Sponsor:



Girls’ Programming Network

Who are the tutors?



Girls’ Programming Network

Who are you?



Girls’ Programming Network

Two Truths and a Lie

1. Get in a group of 3-5 
people

2. Tell them three things 
about yourself: 
a. Two of these things 

should be true
b. One of these things 

should be a lie!
3. The other group members 

have to guess which is the 
lie



Girls’ Programming Network

Log on

Log on and jump on the GPN website 

girlsprogramming.network/workshop

Choose your location

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming! 



Girls’ Programming Network

Tell us you’re here!

Click on the 
Start of Day Survey 

and fill it in now!



Girls’ Programming Network

Today’s project!

Tic Tac Toe



Girls’ Programming Network

Introduction to Edstem



Girls’ Programming Network

Signing up to Edstem

We are shifting all our courses to a new website called “Edstem” so here’s an 
overview of how to sign up and how to use it.

First let’s go through how to create an account.

1. Follow this link: https://edstem.org/au/join/44m2U2 
2. Type in your name and your personal email address
3. Click Create Account
4. Go to your email to verify your account
5. Create a password
6. It should then take you to the courses home page. 
7. Click on the one we will be using for this project:

If you don’t have access to your email account, ask a tutor for a GPN EdStem login  

https://edstem.org/au/join/44m2U2


Girls’ Programming Network

Getting to the lessons

1. Once you are in the course, you’ll be taken to a discussion page. 
2. Click the button for the lessons page (top right - looks like a 

book)



Girls’ Programming Network

The set up of the workbook

The main page:

1. Heading at the top that tells you the project  you are in

2. List of “Chapters” called something like 1:Welcome to Tic Tac Toe They 
have an icon that looks like this:

3. To complete your project, we will work through the chapters one at a 
time starting with 1 and continuing on.



Girls’ Programming Network

Inside a Chapter

Inside a chapter there are two main types of pages:

1. Lesson pages

The lessons are where you will do your coding. They are called 
something like 1.1 Welcome! and have this icon:

2. Checkpoints

Each chapter has a checkpoint. Complete the checkpoint to move to 
the next chapter. Make sure you scroll down to see all the questions 
listed. Checkpoints look like this:



Girls’ Programming Network

How to do the work

In each lesson there is:

1. A section on left with instructions for that lesson
2. A section on right for your code

You will need to copy your code from the last lesson, then follow the 
instructions to change your code so that you can work towards finishing the 
project.  



Girls’ Programming Network

Running your code…

To run your code, you will need to click the button that 
says Run. It should run automatically and any outputs 
should be in the “Console” page. You can click the 
button again to rerun your code.

It should look like this;

Don’t worry if you 
forget. Tutors 

will help!



Girls’ Programming Network

Some shortcuts…

There are a couple things you can do to make copying your code from one 
page to another easier.

● Ctrl + A

● Ctrl + C

● Ctrl + V  

Pressing these keys together will select all the text on a page

Pressing these keys together will copy anything that’s selected

Pressing these keys together will paste anything you’ve copied

On Macs use Command (⌘) instead of Ctrl



Girls’ Programming Network

Project time!

You now know all about the EdStem!

You should now sign up and join our 
EdStem class. You should also have a look 

at part 0 of your workbook

 Remember the tutors will be around to help!



Girls’ Programming Network

Lists



Girls’ Programming Network

Lists

But we don’t store it on 
lots of little pieces of 
paper!

We put it in one big 
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!



Girls’ Programming Network

Lists

It would be annoying to store it separately when we code too
>>> shopping_item1 = "Bread"
>>> shopping_item2 = "Chocolate"
>>> shopping_item3 = "Ice Cream"
>>> shopping_item4 = "Pizza"

So much repetition!

Instead we use a python list!
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream", 
"Pizza"]



Girls’ Programming Network

You can put (almost) anything into a list

● You can have a list of integers
>>> primes = [1, 2, 3, 5, 11]

● You can have lists with mixed integers and strings
>>> mixture = [1, 'two', 3, 4, 'five']

● But this is almost never a good idea! You should be 
able to treat every element of the list the same 
way.



Girls’ Programming Network

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the 
variable 

shopping_list

Has square 
brackets

Made up of 
different items 

(these are strings)

The items are 
separated by 

commas



Girls’ Programming Network

Accessing Lists!

The favourites list below holds four strings in order.
faves = ['books', 'butterfly', 'chocolate', 'skateboard']

We can count out the items using index numbers!

0 1 2 3

Remember: Indices start from zero!



Girls’ Programming Network

Accessing Lists

We access the items in a list with an index such as [0]:
>>> faves[0]
'books'

What code do you need to access the second item in the list?
>>> faves[1]
'butterfly'

0       [1] 2 3



Girls’ Programming Network

Accessing Lists

We access the items in a list with an index such as [0]:
>>> faves[0]
'books'

What code do you need to access the second item in the list?
>>> faves[1]
'butterfly'

0       [1] 2 3



Girls’ Programming Network

Going Negative

Negative indices count backwards from the end of the list:
>>> faves[-1]
'skateboard'

What would faves[-2] return?
>>> faves[-2]
'chocolate'

-4 -3 [-2] -1



Girls’ Programming Network

Going Negative

Negative indices count backwards from the end of the list:
>>> faves[-1]
'skateboard'

What would faves[-2] return?
>>> faves[-2]
'chocolate'

-4 -3 [-2] -1



Girls’ Programming Network

Falling off the edge

Python complains if you try to go past the end of a list
>>> faves = ['books', 'butterfly', 'chocolate', 

'skateboard']
>>> faves[4]

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range



Girls’ Programming Network

Updating items!

We can also update things in a list:
>>> faves = ['books', 'butterfly', 

'chocolate', 'skateboard']
>>> faves[2]
'chocolate'
>>> faves[2] = 'lollipops'
>>> faves
['books', 'butterfly', 'lollipops', 'skateboard']



Girls’ Programming Network

Updating items!

We can also update things in a list:
>>> faves = ['books', 'butterfly', 

'chocolate', 'skateboard']
>>> faves[2]
'chocolate'
>>> faves[2] = 'lollipops'
>>> faves
['books', 'butterfly', 'lollipops', 'skateboard']



Girls’ Programming Network

List of lists!

You really can put anything in a list, even more lists! 

We could use a list of lists to store different sports teams!
tennis_pairs = [

["Alex", "Emily"], ["Kass", "Annie"], ["Amara", "Viv"]

]

Get the first pair in the list
>>> first_pair = tennis_pairs[0]

>>> ["Alex", "Emily"]

Now we have the first pair handy, we can get the first the first player of the 
first pair
>>> fist_player = first_pair[0]

>>> "Alex"



Girls’ Programming Network

Project time!

You now know all about lists! 

Let’s put what we learnt into our project
Try to do the next Part

 The tutors will be around to help!



Girls’ Programming Network

Functions!

Simpler, less repetition, easier to read code!



Girls’ Programming Network

How functions fit together!

Functions are like factories!

Running a factory doesn’t mean doing all the work 
yourself, you can get other factories to help you out!

Your main factory!

Timber Mill

Metal Worker

Cupcake factory



Girls’ Programming Network

How functions fit together!

Functions are like factories!

Asking other factories to do some work for you makes 
your main task simper. You can focus on the 
assembly!

Your main factory!I’d like to place an 
order for a piece 
of wood. 2 meters 
by 1.5 meters. 

Sure thing! 
Coming 
right away!

Order

Delivery

Order

Delivery

Can I order 4 
metal poles 
please! 80cm 
long. 

Timber Mill

Cupcake factory

Metal Worker

It will be 
delivered 
straight 
away!



Girls’ Programming Network

How functions fit together!

Functions are like factories!
Your main factory!

Timber Mill

Metal Worker

Cupcake factory

Look at this beautiful 
table I made!

Outsourcing made it 
simple!



Girls’ Programming Network

How functions fit together!

You can write a bunch of 

helpful functions to 

simplify your main goal!

Your main code!
Helps with printing 

nicely

Does 
calculationsUses stats 

to make 
decisions

You can write these 

once and then use 

them lots of times!

They can be 

anything you like!



Girls’ Programming Network

Don’t reinvent the wheel

We’re already familiar with some 
python in built functions like print and 

input!

There’s lots of functions python 
gives us to save us reinventing the 

wheel!
For instance we can use len to get the 
length of a string, rather than having 
to write code to count every letter!

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Try these:

>>> len("Hello world")
11



Girls’ Programming Network

Defining your own functions

Built in functions are great! But sometimes we want 
custom functions!

Defining our own functions means:

● We cut down on repeated code

● Nice function names makes our code clear and easy to read

● We can move bulky code out of the way



Girls’ Programming Network

Defining your own functions

Then you can use your function by 
calling it!

def cat_print():
    print("""      
                            #
                             #
                             #
                   ^..^ #####
                   =TT=      ;
                    #########
                    # #   # #   
                    M M   M M """)

cat_print()
cat_print()

                        #
                         #
                         #
               ^..^ #####
               =TT=      ;
                #########
                # #   # #   
                M M   M M 
                        #
                         #
                         #
               ^..^ #####
               =TT=      ;
                #########
                # #   # #   
                M M   M M 

Which will do this!



Girls’ Programming Network

Defining your own functions

Then you can use your function by 
calling it!

def cat_print():
    print("""      
                            #
                             #
                             #
                   ^..^ #####
                   =TT=      ;
                    #########
                    # #   # #   
                    M M   M M """)

cat_print()
cat_print()

                        #
                         #
                         #
               ^..^ #####
               =TT=      ;
                #########
                # #   # #   
                M M   M M 
                        #
                         #
                         #
               ^..^ #####
               =TT=      ;
                #########
                # #   # #   
                M M   M M 

Which will do this!

When using a function in a script make 
sure you define the function first. 

It doesn’t matter if you call it from inside 
another function though!



Girls’ Programming Network

Functions often need extra information

Functions are more useful if we can change what they do
We can do this by giving them arguments (aka parameters)

Here, we give the hello() function a name

Any string will work

>>> def hello(person):
...   print('Hello, ' + person + ', how are you?')
>>> hello('Alex')
Hello, Alex, how are you?

>>> hello('abcd')
Hello, abcd, how are you?



Girls’ Programming Network

Functions can take multiple arguments

Often we want to work with multiple pieces of information.

You can actually have as many parameters as you like!

This function takes two numbers, adds them together and prints 
the result.

>>> def add(x, y):
...   print(x + y)
>>> add(3, 4)
7



Girls’ Programming Network

Arguments stay inside the function

The arguments are not able to be accessed outside of the function 
declaration.

>>> def hello(person):
...   print('Hello, ' + person + '!')
>>> print(person)
Traceback (most recent call last):

  File "<stdin>", line 1, in <module>
NameError: name 'person' is not defined



Girls’ Programming Network

Variables stay inside the function

Neither are variables made inside the function. They are local variables.

>>> def add(x, y):
...   z = x + y
...   print(z)
>>> add(3, 4)
7
>>> z
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined



Girls’ Programming Network

Global variables are not affected

Changing a variable in a function only changes it inside the function.

>>> z = 1
>>> def add(x, y):
...   z = x + y
...   print(z)
>>> add(3, 4)
7



Girls’ Programming Network

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
...   z = x + y
...   print(z)
>>> add(3, 4)
7

>>> print(z)



Girls’ Programming Network

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
...   z = x + y
...   print(z)
>>> add(3, 4)
7

>>> print(z)
1



Girls’ Programming Network

Recap: A function signature

def add(x, y):

>>> add(2, 3)

the def keyword function name
function arguments

function name function arguments

definition

callsite



Girls’ Programming Network

Giving something back

At the moment our function just does a thing, but it‘s not able to give 
anything back to the main program. 

Currently, we can’t use the result of add()

sum has no value!

>>> def add(x, y):
...   print(x + y)
>>> sum = add(1, 3)
4
>>> sum



Girls’ Programming Network

Giving something back

Using return in a function immediately returns a 
result.

>>> def add(x, y):
...   z = x + y
...   return z
...
>>> sum = add(1, 3)
>>> sum
4



Girls’ Programming Network

Giving something back

When a function returns something, the control is passed back to the 
main program, so no code after the return statement is run.

Here, the print statement after the return never gets run.

>>> def add(x, y):
...   print('before the return')
...   z = x + y
...   return z
...   print('after the return')
>>> sum = add(1, 3)
before the return
>>> sum
4



Girls’ Programming Network

Project time!

Now go be functional.

Do the next part of the project!
Try to do Part 3

 The tutors will be around to help!



Girls’ Programming Network

If Statements



Girls’ Programming Network

Conditions

So to know whether to do something, they find out if it’s True! 

fave_num = 5
if fave_num < 10:
    print("that’s a small number")



Girls’ Programming Network

Else statements

word = "Chocolate"
if word == "GPN":
  print("GPN is awesome!")
else:
  print("The word isn’t GPN :(")

What happens?

else
statements 

means something 
still happens if 

the if statement 
was False



Girls’ Programming Network

Else statements

word = "Chocolate"
if word == "GPN":
  print("GPN is awesome!")
else:
  print("The word isn’t GPN :(")

What happens?
>>> The word isn’t GPN :(

else
statements 

means something 
still happens if 

the if statement 
was False



Girls’ Programming Network

Elif statements

word = "Chocolate"
if word == "GPN":
  print("GPN is awesome!")
elif word == "Chocolate":
  print("YUMMM Chocolate!")
else:
  print("The word isn’t GPN :(")

What happens?

else
statements 

means something 
still happens if 

the if statement 
was False



Girls’ Programming Network

Elif statements

word = "Chocolate"
if word == "GPN":
  print("GPN is awesome!")
elif word == "Chocolate":
  print("YUMMM Chocolate!")
else:
  print("The word isn’t GPN :(")

What happens?
>>> YUMMM Chocolate!

else
statements 

means something 
still happens if 

the if statement 
was False



Girls’ Programming Network

Booleans (True and False)

Python has some special comparisons for checking if something is 
in something else. Try these!

>>> "A" in "AEIOU"
>>> "Z" in "AEIOU"
>>> "a" in "AEIOU"

>>> animals = ["cat", "dog", "goat"]
>>> "banana" in animals
>>> "cat" in animals

>>> phone_book = {"Maddie": 111, "Lucy": 222, "Julia": 333}
>>> "Maddie" in phone_book
>>> "Gabe" in phone_book
>>> 333 in phone_book



Girls’ Programming Network

>>> animals = ["cat", "dog", "goat"]
>>> "banana" in animals
>>> "cat" in animals

>>> phone_book = {"Maddie": 111, "Lucy": 222, "Julia": 333}
>>> "Maddie" in phone_book
>>> "Gabe" in phone_book
>>> 333 in phone_book

>>> "A" in "AEIOU"
>>> "Z" in "AEIOU"
>>> "a" in "AEIOU"

Booleans (True and False)

Python has some special comparisons for checking if something is 
in something else. Try these!

True

False

False True

False

False

False

True

It only checks in the keys!



Girls’ Programming Network

Project Time!

You now know all about if! 

See if you can do the next Part

 The tutors will be around to help!



Girls’ Programming Network

While Loops



Girls’ Programming Network

Introducing … while loops!

i = 0
while i < 3:
   print("i is " + str(i))
   i = i + 1

Initialise the loop 
variable Loop condition

Code to repeat

Update the loop 
variable



Girls’ Programming Network

What happens when…..

What happens if we forget to update the loop variable?

i = 0
while i < 3:
   print("i is " + str(i))



Girls’ Programming Network

What happens when…..

What happens if we forget to update the loop variable?

i = 0
while i < 3:
   print("i is " + str(i))

i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
i is 0
...



Girls’ Programming Network

Give me a break!

But what if I wanna get out of a loop early?
That’s when we use the break keyword!

number = 0
while number != 42 :

number = input("Guess a number: ")

if number = "I give up":
print("The number was 42")
break

number = int(number)



Girls’ Programming Network

Continuing on

How about if I wanna skip the rest of the loop body and loop 
again? We use continue for that!

number = 0
while number != 42 :

number = input("Guess a number: ")

if not number.isnumeric():
print("That’s not a number!")
print("Try again")
continue

number = int(number)



Girls’ Programming Network

Project Time!

while we’re here:

Try to do the next Parts!

 The tutors will be around to help!



Girls’ Programming Network

For Loops



Girls’ Programming Network

Looping through lists!

What would we do if we wanted to print out this list, one word at a 
time?

What if it had a 100 items??? That would be BORING!

words = ['This', 'is', 'a', 'sentence']

print(words[0])
print(words[1])
print(words[2])
print(words[3])



Girls’ Programming Network

For loops allow you to do something for each item in a 
group of things

There are many real world examples, like:

          For each page in this book:
           Read page

              For each chip in this bag of chips:
            Eat chip

For Loops



Girls’ Programming Network

Looping over a list of ints

We can loop through a list:

numbers = [1, 2, 3, 4]
for i in numbers:
   print(i)

What’s going to happen?



Girls’ Programming Network

Looping over a list of ints

We can loop through a list:

● Each item of the list takes a turn 
at being the variable i

● Do the body once for each item

● We’re done when we run out of 
items!

numbers = [1, 2, 3, 4]
for i in numbers:
   print(i)

What’s going to happen?
>>> 1
>>> 2
>>> 3
>>> 4



Girls’ Programming Network

Project Time!

Now you know how to use a for loop!

Try to do Part 5 
...if you are up for it!

The tutors will be around to help!



Girls’ Programming Network

Random!



Girls’ Programming Network

That’s so random!

There’s lots of things in life that 

are up to chance or random!

We want the computer to 

be random sometimes! 

Python lets us import common 

bits of code people use! We’re 

going to use the random module!



Girls’ Programming Network

Using the random module

Let’s choose something randomly from a list! 

This is like drawing something out of a hat in a raffle!

Try this!

1. Import the random module!
>>> import random

2. Copy the shopping list into IDLE
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream", 

 "Pizza"]

3. Choose randomly! Try it a few times!

>>> random.choice(shopping_list)



Girls’ Programming Network

Using the random module

You can also assign your random choice to a variable

>>> import random
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream", 

 "Pizza"]
>>> random_food = random.choice(shopping_list)
>>> print(random_food) 



Girls’ Programming Network

Project Time!

Raaaaaaaaaandom! Can you handle that?

Let’s try use it in our project!
Try to do the next Part

 The tutors will be around to help!



Girls’ Programming Network

Recursion



Girls’ Programming Network

Outline

1. What is recursion

2. Recursive function



Girls’ Programming Network

Recursion

● In simple words recursion means to repeat … But it’s a special 
type of repetition



Girls’ Programming Network

Examples

Recursion means “defining something in terms of itself” usually at some 
smaller scale, perhaps multiple times, to achieve your objective. 

“A folder is a structure that holds files and (smaller) folders”



Girls’ Programming Network

Drawing a snowflake

● How could we draw a snowflake using recursion? 



Girls’ Programming Network

Drawing a snowflake

Let’s start by finding the simplest shape in the snowflake: 
a straight line1



Girls’ Programming Network

Drawing a snowflake

Then, we create a bump in the middle of the straight line2



Girls’ Programming Network

Drawing a snowflake

● What would happen if we repeated steps              and              ?
● (1) Find straight lines
● (2) Create a bump in the middle of the straight line

1 2



Girls’ Programming Network

Drawing a snowflake

● Repeat steps              and              again?

● (1) Find straight lines
● (2) Create a bump in the middle of the straight line

1 2



Girls’ Programming Network

What is a recursive function?

1. A recursive function calls itself  with a slightly different 
argument each time forming layers of repeated function calls 
that each produce their own result.

2. There is an end-case that breaks the recursion and brings you 
back to the first layer, producing one final result.

      



Girls’ Programming Network

Code example

Let’s imagine we want to write a function that works out if a word is a 
Palindrome 

anna banana kayak rotator water gpn



Girls’ Programming Network

Code example

Let’s imagine we want to write a function that works out if a word is a 
Palindrome 

anna banana kayak rotator water gpn

A Palindrome is a word that is the same forwards and backwards!



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

First you would check 
if the first and last 
letters are the same



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

First you would check 
if the first and last 
letters are the same

✓



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

Then you would check 
the next two…



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

Then you would check 
the next two…

✓



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

Then the next two…



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

Then the next two…

✓



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

Then we only have 1 
left, so we’re done!



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

So how would you write this in code? 🤔



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

So how would you write this in code? 🤔
You could use a loop to figure this out, but we’re going to use ✨recursion ✨



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

The best way to start with recursion is to think about when you want to 
STOP.

When did we stop checking if the word was a palindrome?



Girls’ Programming Network

Code example

How would you work this out by hand? Let’s use this word as an example:

rotator

The best way to start with recursion is to think about when you want to 
STOP.

When did we stop checking if the word was a palindrome?

When we got to just one letter!



Girls’ Programming Network

Code example

Here is what we call our “base case” - this means that this is the smallest 
problem our function can solve.

def is_a_palindrome(word):
    if len(word) < 2:
        return True



Girls’ Programming Network

Code example

Here is what we call our “base case” - this means that this is the smallest 
problem our function can solve.
E.g. the word “a” is a palindrome (and this function knows it!)

Next we need to think about the next size up for our problem.
E.g. the word “wow”

def is_a_palindrome(word):
    if len(word) < 2:
        return True



Girls’ Programming Network

Code example

Now we are checking the letters on the outside of the word. What do we do 
next? (hint: this is where the recursion happens)

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        ???



Girls’ Programming Network

Code example

Now we are checking the letters on the outside of the word. What do we do 
next? (hint: this is where the recursion happens)

We recursively call our function, making the word smaller and smaller until 
we reach the base case.

Let’s look at it in more detail!

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”False



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”

Equal?
True!



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”False



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”

Equal?
True!



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”False



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”

Equal?
True!



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “a”



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “a”True



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “tat”

True



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “otato”

True



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”

True



Girls’ Programming Network

Code example

def is_a_palindrome(word):
    if len(word) < 2:
        return True

if word[0] == word[-1]:
        return is_a_palindrome(word[1:-1])

else:
return False

word = “rotator”

True

“rotator” is a palindrome!



Girls’ Programming Network

Base case

So if recursion keeps solving smaller and smaller versions of a 
problem, when does it stop?

We use a base case to tell the function when to stop recursing.

def is_palindrome(word) :
if len(word) < 2:

return True
if word[0] == word[-1]:

return is_palindrome(word[1:-1])

Base Case

Recursive 
Case



Girls’ Programming Network

Project Time!

Let’s get on to the next thing

Try to do the next Part!

 The tutors will be around to help!


