

Girls’ Programming Network

Tic Tac Toe!

Tutors Only

This project was created by GPN Australia for GPN sites all
around Australia!

This workbook and related materials were created by tutors at:

Sydney, Canberra and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers

Amanda Hogan
Isabella Hogan
Renee Noble

A massive thanks to our sponsors for supporting us!

Workbook 1

Part 1: Welcome to Tic Tac Toe!

1.4: Printing the Board

Copy your previous code here...
print("Welcome to Tic-Tac-Toe!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
print("-------------")
print("|", board[0], "|", board[1], "|", board[2], "|")
print("-------------")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("-------------")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("-------------")

Part 2: Enter the First Move

2.3: Check what happened!

Copy your previous code here...
print("Welcome to Tic-Tac-Toe!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
print("-------------")
print("|", board[0], "|", board[1], "|", board[2], "|")
print("-------------")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("-------------")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("-------------")

symbol = "0"
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

Bonus 2.5: Welcome the players

Copy your previous code here...
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
print("-------------")
print("|", board[0], "|", board[1], "|", board[2], "|")
print("-------------")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("-------------")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("-------------")

symbol = "0"
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

Part 3: Creating a print function

3.4: Let’s print the board again

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
print_board(board)

symbol = "0"
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

print_board(board)

Part 4 : Taking Turns

4.3 Run your code!

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
print_board(board)

symbol = "0"
print("The current player is", symbol, "!")
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

print_board(board)
if symbol == "0":
 symbol = "X"
else:
 symbol = "0"

Part 5 : Wait a while to win?

5.2 Did I win yet?

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

symbol = "0"
while not game_over:
 print("The current player is", symbol, "!")
 square = input("Which square do you want your symbol to go in? ")
 square _index = int(square)
 board[square_index] = symbol

 print_board(board)
 if symbol == "0":
 symbol = "X"
 else:
 symbol = "0"

Part 6 : Winner winner tic tac dinner

6.2 Functions again

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")

def check_winner:

print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

symbol = "0"
while not game_over:
 print("The current player is", symbol, "!")
 square = input("Which square do you want your symbol to go in? ")
 square _index = int(square)
 board[square_index] = symbol

 print_board(board)
 if symbol == "0":
 symbol = "X"
 else:
 symbol = "0"

Part 7.1 : Option 1

7.1.4 No winners here!

Option 1: If statements
def check winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

Part 7.2 : Option 2

7.1.4 No winners here!

Option 2: For loop and lists
def check winner(board) :
 winning combos = [
 # Rows
 (0,1,2),
 (3,4,5),
 (6,7,8),
 # Columns
 (0,3,6),
 (1,4,7),
 (2,5,8),
 # Diagonals
 (0,4,8),
 (2,4,6)
]

 for combo in winning_combos:
 combo_part_0 = combo[0]
 combo_part_1 = combo[1]
 combo_part_2 = combo[2]
 symbol_0 = board[combo_part_0]
 symbol_1 = board[combo_part_1]
 symbol_2 = board[combo_part_2]
 if symbol_0 == symbol_1 == symbol_2 == " ":
 return True
 return False

Part 8 : Declare the winner

8.2 Declare who won

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")

Be aware that students may have used the Option 2 code here

def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

symbol = "0"
while not game_over:
 print("The current player is", symbol, "!")
 square = input("Which square do you want your symbol to go in? ")

 square_index = int(square)
 board[square_index] = symbol

 print_board(board)
 game_over = check_winner(board)
 if game_over:
 print(symbol, "won! Congratulations!")
 if symbol == "0":
 symbol = "X"
 else:
 symbol = "0"

Extensions

All extensions commented with which

import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")
player_X = input("Who is playing crosses? ")

print("Welcome", player_O, ", your symbol is O!")
print("Welcome", player_X, ", your symbol is X!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice("X","O")

Extension 12
if symbol == "O":
 current_player = player_O
else:
 current_player = player_X
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = random.choice(free_squares)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares.remove(square_index)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 if symbol == "0":
 current_player = player_X
 symbol = "X"
 else:
 current_player = player_O
 symbol = "0"

Workbook 2
Part 1: Adding a basic computer player

1.4: Let the computer choose

● At the top of the file, make sure the student is importing the random function!
import random

● And then in the game loop, the square_index will be set like this:
square = input("Which square do you want to choose? ")
square_index = int(square)
if symbol == human_symbol:
 square = input("Which square do you want to choose? ")
 square_index = int(square)
else:
 square_index = random.choice(free_squares)

BONUS 1.5: Stop the silly humans

● Students will just need to add an if statement like this, in bold:

if symbol == human_symbol:
 square = input("Which square do you want to choose? ")
 square_index = int(square)

 if square_index not in free_squares:
 print("You can't place a symbol on that tile, it's already taken!")
 continue
else:
 square_index = random.choice(free_squares)

Full code for lesson 1

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is 0!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice(["X","0"])
Extension 12
if symbol == "0":

 current_player = player_O
else:
 current_player = player_X
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = random.choice(free_squares)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = []
 for i, square in enumerate(board):
 if square == " ":
 free_squares.append(i)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 if symbol == "0":
 current_player = player_X
 symbol = "X"
 else:
 current_player = player_O
 symbol = "0"

Part 2: Making It Modular

2.3 Switching turns

● Make sure the student has removed the free_squares list from the game loop. The new
function should look like this:

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

● Note that if the student completed Bonus 1.5, they will to update that bit of code to call the new
function, like this:

if square_index not in get_free_squares(board):
 print("You can't place a symbol on that tile!")
 continue

The new function should look like this:

def get_comp_move(board):
 free_squares = get_free_squares(board)
 return random.choice(free_squares)

● And then in the game loop, the get_comp_move will be called like this:

if symbol == human_symbol:
 square = input("Which square do you want to choose? ")
 square_index = int(square)
else:
 square_index = get_comp_move(board)

● The new function should look like this:

def get_other_symbol(symbol):
 if symbol == comp_symbol:
 return human_symbol
 else:
 return comp_symbol

● And then in the game loop, the function will be called like this:

elif counter == 9:
 print("Game over! It's a tie!")

 break

symbol = get_other_symbol(symbol)

Full code Lesson 2

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 free_squares = get_free_squares(board)
 return random.choice(free_squares)

def get_opposite_symbol(symbol):
 if symbol == "0":
 return "X"
 else:
 return "0"

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is 0!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice(["X","0"])
Extension 12
if symbol == "0":
 current_player = player_O
else:
 current_player = player_X
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")

 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)

Part 3: Winning on the next turn

3.1 Play to win

● The get_comp_move function should now look like this:

def get_comp_move(board):
 free_squares = get_free_squares(board)

 winning_moves = []
 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 else:
 return random.choice(free_squares)

● Note, the student could also write len(winning_moves) >= 1 or len(winning_moves) != 0.

Full Code Lesson 3

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")

 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 winning_moves = []
 free_squares = get_free_squares(board)
 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "
 if len(winning_moves) > 0:
 return winning_moves[0]
 return random.choice(free_squares)

def get_opposite_symbol(symbol):
 if symbol == "0":
 return "X"
 else:
 return "0"

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"

human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is 0!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice(["X","0"])
Extension 12
if symbol == "0":
 current_player = player_O
else:
 current_player = player_X
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)
 if symbol == "0":
 current_player = player_O
 else:
 current_player = "computer"

Part 4: The best move for me!

4.4 Check your work

● The new function should look like this:

def best_outcome_for_symbol(player_symbol, outcomes):
 if player_symbol in outcomes:
 return player_symbol
 elif "T" in outcomes:
 return "T"
 else:
 return get_other_symbol(player_symbol)

● Although it might also look like this, which is also correct:

def best_outcome_for_symbol(player_symbol, outcomes):
 best_outcome = get_other_symbol(player_symbol)
 if player_symbol in outcomes:
 best_outcome = player_symbol
 elif "T" in outcomes:
 best_outcome = "T"
 return best_outcome

Full Code Lesson 4

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":

 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 winning_moves = []
 free_squares = get_free_squares(board)
 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "
 if len(winning_moves) > 0:
 return winning_moves[0]
 return random.choice(free_squares)

def get_opposite_symbol(symbol):
 if symbol == "0":
 return "X"
 else:
 return "0"

def best_outcome_for_symbol(symbol, outcomes):
 if symbol in outcomes:
 return symbol
 elif "T" in outcomes:
 return "T"
 else:
 return get_other_symbol(player_symbol)

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is 0!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False

print_board(board)

Extension 9
symbol = random.choice(["X","0"])
Extension 12
if symbol == "0":
 current_player = player_O
else:
 current_player = "computer"
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)
 if symbol == "0":
 current_player = player_O
 else:
 current_player = "computer"

Part 5: The next, next, next moves

5.5 Space to place, but no way to win!

● The function should look like this:

def get_move_outcomes(player_symbol, board):
 free_squares = get_free_squares(board)

 if len(free_squares) == 0:
 return "T"

 outcomes = []
 for square in free_squares:
 board[square] = player_symbol
 if check_winner(board):
 outcomes.append(player_symbol)
 else:
 opponent_symbol = get_other_symbol(player_symbol)
 best_outcome = get_move_outcomes(opponent_symbol, board)
 outcomes.append(best_outcome)
 board[square] = " "

 return best_outcome_for_symbol(player_symbol, outcomes)

● There is no reason why the student can’t append the result directly to the list. Just let them do
whatever makes the most sense to them!

outcomes.append(get_move_outcomes(opponent_symbol, board))

Full Code Lesson 5

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :

 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 winning_moves = []
 free_squares = get_free_squares(board)
 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "
 if len(winning_moves) > 0:
 return winning_moves[0]
 return random.choice(free_squares)

def get_opposite_symbol(symbol):
 if symbol == "0":
 return = "X"
 else:
 return "0"

def best_outcome_for_symbol(symbol, outcomes):
 if symbol in outcomes:
 return symbol
 elif "T" in outcomes:
 return "T"
 else:
 return get_other_symbol(player_symbol)

def get_move_outcomes(symbol, board):
 free_squares = get_free_squares(board)
 if len(free_squares) == 0:
 return "T"
 results = []
 for square in free_squares:
 board[square] = symbol
 if check_winner(board):
 results.append(symbol)
 else:
 symbol = get_opposite_symbol(symbol)
 results.append(get_move_outcomes(symbol, board))
 board[square] = " "
 return best_outcome_for_symbol(symbol, results)

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is 0!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice([comp_symbol,human_symbol])
Extension 12
if symbol == human_symbol:
 current_player = player_O
else:
 current_player = "computer"
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:

 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)
 if symbol == human_symbol:
 current_player = player_O
 else:
 current_player = "computer"

Part 6: Computer can’t be beat

6.3 Choosing your favourite

● And finally the function should look like this

def get_comp_move(board):
 free_squares = get_free_squares(board)

 winning_moves = []
 tied_moves = []
 losing_moves = []

 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):

 winning_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 else:
 for square in free_squares:
 board[square] = comp_symbol
 result = get_move_outcomes(human_symbol, board)
 if result == comp_symbol:
 winning_moves.append(square)
 elif result == "T":
 tied_moves.append(square)
 else:
 losing_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 elif len(tied_moves) > 0:
 return tied_moves[0]
 else:
 return losing_moves[0]

Full Code Lesson 6

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True

 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 free_squares = get_free_squares(board)

 winning_moves = []
 tied_moves = []
 losing_moves = []

 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 else:
 for square in free_squares:
 board[square] = comp_symbol
 result = get_move_outcomes(human_symbol, board)
 if result == comp_symbol:
 winning_moves.append(square)
 elif result == "T":
 tied_moves.append(square)
 else:
 losing_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 elif len(tied_moves) > 0:
 return tied_moves[0]
 else:
 return losing_moves[0]

def get_opposite_symbol(symbol):
 if symbol == "0":
 return "X"
 else:

 return "0"

def best_outcome_for_symbol(symbol, outcomes):
 if symbol in outcomes:
 return symbol
 elif "T" in outcomes:
 return "T"
 else:
 return get_opposite_symbol(symbol)

def get_move_outcomes(player_symbol, board):
 free_squares = get_free_squares(board)

 if len(free_squares) == 0:
 return "T"

 outcomes = []
 for square in free_squares:
 board[square] = player_symbol
 if check_winner(board):
 outcomes.append(player_symbol)
 else:
 opponent_symbol = get_opposite_symbol(player_symbol)
 best_outcome = get_move_outcomes(opponent_symbol, board)
 outcomes.append(best_outcome)
 board[square] = " "

 return best_outcome_for_symbol(player_symbol, outcomes)

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is O!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice([comp_symbol,human_symbol])
Extension 12
if symbol == human_symbol:
 current_player = player_O
else:
 current_player = "computer"
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:

 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)
 if symbol == human_symbol:
 current_player = player_O
 else:
 current_player = "computer"

Copy your previous code here...

BONUS 6.5: Using a dictionary

● Most of the code for the bonus is provided above, it’s just a matter of the student figuring out
where to slot them in, highlighted below in bold:

def get_comp_move(board):
 free_squares = get_free_squares(board)
 outcomes = {comp_symbol: [], "T": [], human_symbol: []}

 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 outcomes[comp_symbol].append(square)
 board[square] = " "

 if len(outcomes[comp_symbol]) > 0:
 return outcomes[comp_symbol][0]
 else:
 for square in free_squares:
 board[square] = comp_symbol
 result = get_move_outcomes(human_symbol, board)
 outcomes[result].append(square)
 board[square] = " "

 if len(outcomes[comp_symbol]) > 0:
 return outcomes[comp_symbol][0]
 elif len(outcomes["T"]) > 0:
 return outcomes["T"][0]
 else:
 return outcomes[human_symbol][0]

BONUS 6.5: Using a dictionary

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):
 print("-------------")
 print("|", board[0], "|", board[1], "|", board[2], "|")
 print("-------------")
 print("|", board[3], "|", board[4], "|", board[5], "|")
 print("-------------")
 print("|", board[6], "|", board[7], "|", board[8], "|")
 print("-------------")
Be aware that students may have used the Option 2 code here
def check_winner(board) :
 if board[0] == board[1] == board[2] != " ":
 return True
 elif board[3] == board[4] == board[5] != " ":
 return True
 elif board[6] == board[7] == board[8] != " ":
 return True
 if board[0] == board[3] == board[6] != " ":
 return True
 elif board[1] == board[4] == board[7] != " ":
 return True
 elif board[2] == board[5] == board[8] != " ":
 return True
 if board[0] == board[4] == board[8] != " ":
 return True
 elif board[2] == board[4] == board[6] != " ":
 return True
 else:
 return False

def get_free_squares(board):
 free_squares = []
 for index, symbol in enumerate(board):
 if symbol == " ":
 free_squares.append(index)
 return free_squares

def get_comp_move(board):
 free_squares = get_free_squares(board)

 winning_moves = []
 tied_moves = []
 losing_moves = []

 for square in free_squares:
 board[square] = comp_symbol
 if check_winner(board):
 winning_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 else:
 for square in free_squares:
 board[square] = comp_symbol
 result = get_move_outcomes(human_symbol, board)
 if result == comp_symbol:
 winning_moves.append(square)
 elif result == "T":
 tied_moves.append(square)
 else:
 losing_moves.append(square)
 board[square] = " "

 if len(winning_moves) > 0:
 return winning_moves[0]
 elif len(tied_moves) > 0:
 return tied_moves[0]
 else:
 return losing_moves[0]

def get_opposite_symbol(symbol):
 if symbol == "0":
 return "X"
 else:
 return "0"

def best_outcome_for_symbol(symbol, outcomes):
 if symbol in outcomes:
 return symbol
 elif "T" in outcomes:
 return "T"
 else:
 return get_opposite_symbol(symbol)

def get_move_outcomes(player_symbol, board):
 free_squares = get_free_squares(board)

 if len(free_squares) == 0:
 return "T"

 outcomes = []
 for square in free_squares:
 board[square] = player_symbol
 if check_winner(board):
 outcomes.append(player_symbol)
 else:
 opponent_symbol = get_opposite_symbol(player_symbol)
 best_outcome = get_move_outcomes(opponent_symbol, board)
 outcomes.append(best_outcome)
 board[square] = " "

 return best_outcome_for_symbol(player_symbol, outcomes)

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"
human_symbol = "0"
print("Welcome to Tic-Tac-Toe!")
player_O = input("Who is playing naughts? ")

print("Welcome", player_O, ", your symbol is O!")
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
game_over = False
print_board(board)

Extension 9
symbol = random.choice([comp_symbol,human_symbol])
Extension 12
if symbol == human_symbol:
 current_player = player_O
else:
 current_player = "computer"
print(symbol,"player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12

 # Extension 13
 if current_player == "computer":
 square = get_comp_move(board)
 else:
 square = input("Which square do you want your symbol to go in? ")
 square_index = int(square)

 # Extension 9
 if square_index not in free_squares:
 print("That wasn't a valid move!")
 continue
 board[square_index] = symbol
 counter+=1

 print_board(board)
 free_squares = get_free_squares(board)
 game_over = check_winner(board)
 if game_over:
 print(current_player, "won! Congratulations!")
 elif counter == 9: # Extension 10
 print("It's a tie!")
 break

 symbol = get_opposite_symbol(symbol)

 if symbol == human_symbol:
 current_player = player_O
 else:
 current_player = "computer"

	
	
	Girls’ Programming Network
	Tic Tac Toe!
	This project was created by GPN Australia for GPN sites all around Australia!
	
	Workbook 1
	Part 1: Welcome to Tic Tac Toe!
	Part 2: Enter the First Move
	
	Part 3: Creating a print function
	Part 4 : Taking Turns
	Part 5 : Wait a while to win?
	
	Part 6 : Winner winner tic tac dinner
	
	Part 7.1 : Option 1
	Option 1: If statements

	
	Part 7.2 : Option 2
	Option 2: For loop and lists

	Part 8 : Declare the winner
	Extensions
	
	Workbook 2
	Part 1: Adding a basic computer player
	
	Part 2: Making It Modular
	Part 3: Winning on the next turn
	
	Part 4: The best move for me!
	Part 6: Computer can’t be beat

