-0

Girls’ Programming Network

Tic Tac Toe!

Tutors Only

This project was created by GPN Australia for GPN sites all
around Australia!

This workbook and related materials were created by tutors at:
Sydney, Canberra and Perth
 SmErey

|

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers
Amanda Hogan

Isabella Hogan
Renee Noble

A massive thanks to our sponsors for supporting us!

A ATLASSIAN

Workbook 1

Part 1: Welcome to Tic Tac Toe!

1.4: Printing the Board

Copy your previous code here...

print("Welcome to Tic-Tac-Toe!")

board = [", " ", " v, mor, oy
print("------------- ")

print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")

print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")

print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Part 2: Enter the First Move

2.3: Check what happened!

Copy your previous code here...

print("Welcome to Tic-Tac-Toe!")

board = [" ", " ", " v, mon, oy oy
print("------------- ")

print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")

print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")

print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

symbol = "9@"

square = input("Which square do you want your symbol to go in? ")
square _index = int(square)

board[square_index] = symbol

Bonus 2.5: Welcome the players

Copy your previous code here...

print("Welcome to Tic-Tac-Toe!")

player O = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")
print("Welcome", player_ 0O, ", your symbol is 0O!")
print(“Welcome", player_X, ", your symbol is XI™)

board = [" ", " ", " v, mon, oy oy
print("------------- ")

print("|", board[@], "|", board[1], "|", board[2], "|")

print("|", board[3], "|", board[4], "|", board[5], "|")

print("|", board[6], "|", board[7], "|", board[8], "|")

symbol "o"

square = input("Which square do you want your symbol to go in? ")
square _index = int(square)

board[square_index] = symbol

Part 3: Creating a print function

3.4: Let’s print the board again

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

print("Welcome to Tic-Tac-Toe!")

player 0 = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")
print("wWelcome", player 0, ", your symbol is 0!")
print("Welcome"”, player X, ", your symbol is X!")
board = [” ”) . ”.’ " ”J " ”J " ”J " "J " "J " "J " "]
print_board(board)

symbol "9"

square = input("Which square do you want your symbol to go in? ")
square _index = int(square)

board[square_index] = symbol

print_board(board)

Part 4 : Taking Turns

4.3 Run your code!

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

print("Welcome to Tic-Tac-Toe!")
player O = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")

print("Welcome", player_ 0, ", your symbol is 0O!")
print("Welcome", player_ X, ", your symbol is X!")
boar\d = [" n , " n s 11} n , 11} n , 11} n , n " , n n , n 11} , n 11}]

print_board(board)

symbol = "0"

print("The current player is", symbol, "!")

square = input("Which square do you want your symbol to go in? ")
square _index = int(square)

board[square_index] = symbol

print_board(board)
if symbol == "@":
symbol = "X"
else:
symbol = "@"

Part 5 : Wait a while to win?

5.2 Did | win yet?

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

print("Welcome to Tic-Tac-Toe!")
player O = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")

print("Welcome", player_ 0, ", your symbol is 0O!")
print("Welcome", player_ X, ", your symbol is X!")
boar\d = [e J e J e J o J e J o J o J o J o]
game_over = False

print_board(board)

symbol = "0@"
while not game_over:
print("The current player is", symbol, "!")
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

print_board(board)

if symbol == "0":
symbol = "X"
else:

symbol "o"

Part 6 : Winner winner tic tac dinner

6.2 Functions again

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

def check_winner:

print("Welcome to Tic-Tac-Toe!")
player 0 = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")

print("Welcome", player_0, ", your symbol is 0!")
print("Welcome", player X, ", your symbol is X!™")
boar‘d = [o J o J e J e J e J o J o J o) o]
game_over = False

print_board(board)

symbol = "9@"
while not game_over:
print("The current player is", symbol, "!")
square = input("Which square do you want your symbol to go in? ")
square _index = int(square)
board[square_index] = symbol

print_board(board)

if symbol == "0":
symbol = "X"
else:

symbol "o"

Part 7.1 : Option 1

7.1.4 No winners here!

Option 1: If statements

def check winner(board) :

if board[0] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

Part 7.2 : Option 2

7.1.4 No winners here!

Option 2: For loop and lists

def check winner(board) :
winning combos = [

Rows
(0,1,2),
(3,4,5),
(6,7,8),
Columns
(9,3,6),
(1J4J7))
(2,5,8),
Diagonals
(0,4,8),
(2,4,6)

for combo in winning_combos:

combo_part @ = combo[9]
combo_part_1 = combo[1]
combo_part_2 = combo[2]

symbol_© = board[combo_part_0]
symbol 1 = board[combo_part 1]
symbol 2 = board[combo_part_2]
if symbol © == symbol_1 == symbol_2 ==
return True

return False

Part 8 : Declare the winner

8.2 Declare who won

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[0] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

print("Welcome to Tic-Tac-Toe!")
player_0O = input("Who is playing naughts? ™)
player_X = input("Who is playing crosses? ")

print("Welcome", player_0, ", your symbol is 0O!")
print("Welcome", player_X, ", your symbol is X!")
boar‘d = [" "J " "J " “J " "J ! "J ! ") ! ") ! "’ ! "]
game_over = False

print_board(board)

symbol = "9@"
while not game_over:
print("The current player is", symbol, "!")
square = input("Which square do you want your symbol to go in? ")

square_index = int(square)
board[square_index] = symbol

print_board(board)
game_over = check winner(board)
if game_over:
print(symbol, "won! Congratulations!™)
if symbol == "0":
symbol "X
else:
symbol

llell

Extensions

All extensions commented with which

import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[0] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

print("Welcome to Tic-Tac-Toe!")

player O = input("Who is playing naughts? ")
player X = input("Who is playing crosses? ")
print("Welcome", player 0, ", your symbol is 0O!")
print("Welcome", player X, ", your symbol is X!")
board = [" ", " ", " v, mon, oy
game_over = False

print_board(board)

Extension 9
symbol = random.choice("X","0")

Extension 12
if symbol == "0":

current_player = player_O
else:

current_player = player_ X
print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:

print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

Extension 13
if current_player == "computer":
square = random.choice(free_squares)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9

if square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares.remove(square_index)
game_over = check winner(board)
if game_over:
print(current_player, "won! Congratulations!™)

elif counter == 9: # Extension 10
print("It's a tie!™)
break

if symbol == "0":
current_player = player_X
symbol = "X"

else:

current_player
symbol = "0"

player_O

Workbook 2

Part 1: Adding a basic computer player

1.4: Let the computer choose

e At the top of the file, make sure the student is importing the random function!
import random

e And then in the game loop, the square_index will be set like this:
square = input("Which square do you want to choose? ")

square_index = int(square)

if symbol == human_symbol:
square = input("Which square do you want to choose? ")
square_index = int(square)

else:
square_index = random.choice(free squares)

BONUS 1.5: Stop the silly humans

e Students will just need to add an if statement like this, in bold:

if symbol == human_symbol:
square = input("Which square do you want to choose? ")
square_index = int(square)

if square_index not in free_squares:
print("You can't place a symbol on that tile, it's already taken!")
continue
else:
square_index = random.choice(free_squares)

Full code for lesson 1

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[0] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] I= " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

print("Welcome to Tic-Tac-Toe!")

comp_symbol = "X"

human_symbol = "9"

print("Welcome to Tic-Tac-Toel")

player 0 = input("Who is playing naughts? ")
print("Welcome", player 0, ", your symbol is @!")
board = [" ") " "J " "J ! "J ! "J " "J " "J " "J " "]
game_over = False

print_board(board)

Extension 9

symbol = random.choice(["X","6"])
Extension 12

i1f symbol == "90":

current_player
else:
current_player = player_X
print(symbol, "player will go first!")
free squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

player 0O

Extension 13
1f current_player == "computer":
square = random.choice(free_squares)
else:
square = input("Which square do you want your symbol to go in? ")
square_1index = int(square)

Extension 9

1f square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = []
for i, square in enumerate(board):

1f square == " ":

free_squares.append(i)

game_over = check_winner(board)
1f game_over:

print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tiel")
break

1f symbol == "0":
current_player = player X
symbol = "X"

else:

current_player
symbol = "9"

player_0O

Part 2: Making It Modular

e Make sure the student has removed the free_squares list from the game loop. The new
function should look like this:

def get_free_squares(board):
free_squares = []
for index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

e Note that if the student completed Bonus 1.5, they will to update that bit of code to call the new
function, like this:

if square_index not in get_free_squares(board):
print("You can't place a symbol on that tile!")
continue

The new function should look like this:

def get_comp_move(board):
free_squares = get_free_squares(board)
return random.choice(free_squares)

e And then in the game loop, the get_comp_move will be called like this:

if symbol == human_symbol:
square = input("Which square do you want to choose? ")
square_index = int(square)

else:
square_index = get_comp_move(board)

e The new function should look like this:

def get_other_symbol(symbol):
if symbol == comp_symbol:
return human_symbol
else:
return comp_symbol

e And then in the game loop, the function will be called like this:

elif counter == 9:
print("Game over! It's a tie!")

break

symbol = get_other_symbol(symbol)

Full code Lesson 2

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@©], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[6] == board[1] == board[2] I= " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[@] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

def get_free_squares(board):
free_squares = []
for 1index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

def get_comp_move(board):
free_squares = get_free squares(board)
return random.choice(free_squares)

def get_opposite_symbol (symbol):

i1f symbol == "90":
return "X"
else:
return "0"

print("Welcome to Tic-Tac-Toe!")

comp_symbol = "X"

human_symbol = "9"

print("Welcome to Tic-Tac-Toe!")

player 0 = input("Who is playing naughts? ")
print("“Welcome"”, player_0, ", your symbol is 6!")
board = [” ”J ! ”J ! ”J ! ”; ! ”; ! ”J ! "J ! ”J " "]
game_over = False

print_board(board)

Extension 9
symbol = random.choice(["X","90"])
Extension 12
if symbol == "9":

current_player = player_ 0
else:

current_player = player X
print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:

print("The current player is"”, current_player, "Who is playing as", symbol,"!"
#Extension 12

Extension 13
1f current_player == "computer":
square = get_comp_move(board)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9

1f square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = get free_squares(board)
game_over = check_winner(board)
1f game_over:
print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tiel")
break

symbol = get opposite _symbol (symbol)

Part 3: Winning on the next turn

3.1 Play to win

e The get_comp move function should now look like this:

def get_comp_move(board):
free_squares = get free_squares(board)

winning_moves = []
for square in free_squares:
board[square] = comp_symbol
if check_winner(board):
winning moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[0]
else:
return random.choice(free_squares)

e Note, the student could also write 1en(winning_moves) >= 1 or len(winning_moves) != 0.

Full Code Lesson 3

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "[|")
print("---------—---- ")

print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")

print("|", board[6], "|", board[7], "[", board[8], "|")
print("------------- ")
Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[0] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " ":
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[0] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6c] != " ":
return True

else:
return False

def get_free_squares(board):
free_squares = []
for 1index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

def get_comp_move(board):

winning_moves = []

free_squares = get free squares(board)

for square in free_squares:
board[square] = comp_symbol
1f check _winner(board):

winning_moves.append(square)

board[square] = " "

if Len(winning_moves) > 9:
return winning_moves[0]

return random.choice(free_squares)

def get_opposite_symbol (symbol):

if symbol == "0":
return "X"
else:
return "0"

print("Welcome to Tic-Tac-Toe!")
comp_symbol = "X"

human_symbol = "9"

print("Welcome to Tic-Tac-Toe!")

player 0 = input("Who is playing naughts? ")
print("Welcome", player 0, ", your symbol is @!")
board = [" ") " "J ! ”J ! "J ! "J " "J " ”J " "J " "]
game_over = False

print_board(board)

Extension 9
symbol = random.choice(["X","6"])
Extension 12

1f symbol == "9":
current_player = player_0O
else:
current_player = player X

print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
print("The current player 1is", current_player, "Who is playing as", symbol,"!"
#Extension 12

Extension 13
1f current_player == "computer":
square = get _comp_move(board)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9

1f square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = get_free_squares(board)
game_over = check_winner(board)
1f game_over:
print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tiel")
break

symbol = get opposite symbol (symbol)

if symbol == "0":
current_player = player 0O
else:
current_player = "computer"”

The best move for me

Part 4

G

ynsay
Olo|x
X|lo|o
O XX
A
B
uapoo |
wnl 5.0
Olo|x
X0
O X|X
suondo z
E X 40} ynsay jsag wing 8.
E . E sy nsay 0 ¥
O X

3 S 7
Jinsay ynsay ynsay
X|0|X Q|0X
STeTor & X|o|o
o1 x| X) 4 OfX|X
Jnsal fjuo n gnsa1 Ljuo
3 ' ¥ 1589 5,0 Bi5aq 5.0
ynsoy s sy wny 36
o|0|X X{O[x OX X|0|x oX
(o]l § 0|0 O|0|X¥ oo X|0|0
O|x(X O X[X O|X|X O x| X O[X|X
suondo 7
m X Joj ynsay iseg u—-.w..ru.ﬁ_ﬂ,ﬂ Z H ‘X 10) Jnsay jsag wnj sX
m . E s nsay olx m . E synsoy ol x
0|0 olo
0| XX O x| X
ﬁ \1]
= b
E i suondo ¢ olX
1 -0 1o} jInsay seg wnj s.0 o
o XX
. X '] sunsoy
E - - jdn Aem JnoA }Jom 0} pue wopoq ayj} Je Yejs 0} Jaquiaway

"0 40} 2AOW }1S2q S} IN0 HIOM

jun] JNOA
ATNO SHOLNL NOILNTOS

4.4 Check your work

e The new function should look like this:

def best_outcome_for_symbol(player_symbol, outcomes):
if player_symbol in outcomes:
return player_symbol
elif "T" in outcomes:
return "T"
else:
return get_other_symbol(player_symbol)

e Although it might also look like this, which is also correct:

def best_outcome_for_symbol(player_symbol, outcomes):
best_outcome = get_other_symbol(player_symbol)
if player_symbol in outcomes:
best_outcome = player symbol
elif "T" in outcomes:
best_outcome = "T"
return best_outcome

Full Code Lesson 4

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[@], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :
if board[0] == board[1] == board[2] != " ":
return True
elif board[3] == board[4] == board[5] != " ":
return True
elif board[6] == board[7] == board[8] != " ":
return True
if board[0] == board[3] == board[6] != " ":
return True
elif board[1] == board[4] == board[7] != " ":
return True
elif board[2] == board[5] == board[8] != " ":

return True

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

def get_free_squares(board):
free_squares = []
for index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

def get_comp_move(board):
winning_moves = []
free_squares = get_free_squares(board)
for square in free_squares:
board[square] = comp_symbol
if check_winner(board):
winning moves.append(square)
board[square] = " "
if len(winning_moves) > 0:
return winning_moves[0]
return random.choice(free_squares)

def get_opposite_symbol(symbol):

if symbol == "0":
return "X"
else:
return "0"

def best_outcome_for_symbol(symbol, outcomes):
if symbol in outcomes:
return symbol
elif "T" in outcomes:
return "T"
else:
return get_other_symbol(player_symbol)

print("Welcome to Tic-Tac-Toe!")

comp_symbol = "X"

human_symbol = "@"

print("Welcome to Tic-Tac-Toe!")

player 0 = input("Who is playing naughts? ")
print("Welcome", player_0, ", your symbol is @!")
board = [" ”J ! ") " "J : "J ! ") ! ") ! ") ! ": ! "]

game_over = False

print_board(board)

Extension 9
symbol = random.choice(["X","0"])
Extension 12

if symbol == "0":
current_player = player_O
else:
current_player = "computer”

print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

Extension 13
if current_player == "computer":
square = get_comp_move(board)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9

if square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = get_free_squares(board)
game_over = check winner(board)
if game_over:
print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tie!")
break

symbol = get opposite_symbol(symbol)

if symbol == "0":
current_player = player_O
else:
current_player = "computer”

Part 5: The next, next, next moves

5.5 Space to place, but no way to win!

e The function should look like this:

def get_move_outcomes(player symbol, board):
free_squares = get free_squares(board)

if len(free_squares) == 0:
return "T"

outcomes = []
for square in free_squares:
board[square] = player symbol
if check_winner(board):
outcomes.append(player_symbol)
else:
opponent_symbol = get_other_symbol(player_symbol)
best_outcome = get_move_outcomes(opponent_symbol, board)
outcomes.append(best_outcome)
board[square] = " "

return best_outcome_for_symbol(player_symbol, outcomes)

e There is no reason why the student can’t append the result directly to the list. Just let them do
whatever makes the most sense to them!

outcomes.append(get_move_outcomes(opponent_symbol, board))

Full Code Lesson 5

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[e], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[@] == board[1] == board[2] != " ":

return True

elif board[3] == board[4] == board[5] != "
return True

elif board[6] == board[7] == board[8] != "
return True

'Lf boar‘d[@] == bOGf‘d[S’] —-= boar'd[6] I= "o,

return True

elif board[1] == board[4] == board[7] != "
return True

elif board[2] == board[5] == board[8] != "
return True

if board[@] == board[4] == board[8] != " ":

return True

elif board[2] == board[4] == board[6] != "
return True

else:
return False

def get_free_squares(board):

free_squares = []
for 1index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

def get_comp_move(board):

winning_moves = []
free_squares = get free squares(board)
for square in free_squares:
board[square] = comp_symbol
1f check_winner(board):
winning_moves.append(square)
board[square] = " "
if Len(winning_moves) > 9:
return winning _moves[0]
return random.choice(free_squares)

def get_opposite_symbol (symbol):

if symbol == "0":
return = "X"
else:
return "0"

def best_outcome_for_symbol (symbol, outcomes):

1f symbol in outcomes:
return symbol
elif "T" in outcomes:
return "T"
else:
return get_other_symbol (player _symbol)

def get_move_outcomes(symbol, board):
free_squares = get_free_squares(board)
if len(free_squares) == 0:
return "T"
results = []
for square 1in free_squares:
board[square] = symbol
1f check_winner(board):
results.append(symbol)
else:
symbol = get opposite symbol (symbol)
results.append(get_move_outcomes(symbol, board))
board[square] = " "
return best _outcome for symbol (symbol, results)

print("Welcome to Tic-Tac-Toel")

comp_symbol = "X"

human_symbol = "9"

print("Welcome to Tic-Tac-Toel!")

player 0 = input("Who is playing naughts? ")
print("Welcome", player_0, ", your symbol is @!")
board = [" ”J ! ”J ! ”J ! "J : "; ! ”J : ”J : ”) " ”]
game_over = False

print_board(board)

Extension 9
symbol = random.choice([comp_symbol, human_symbol])
Extension 12
1f symbol == human_symbol:
current_player = player 0O
else:
current_player "computer"
print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

Extension 13
1f current_player == "computer":
square = get_comp_move(board)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9
1f square_index not in free_squares:

print("That wasn't a valid move!")
continue
board[square_index] = symbol
counter+=1

print_board(board)
free_squares = get_free_squares(board)
game_over = check_winner(board)
1f game_over:
print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tiel")
break

symbol = get opposite symbol (symbol)
1f symbol == human_symbol:
current_player = player_0O
else:
current_player = "computer"”

Part 6: Computer can’t be beat

6.3 Choosing your favourite

e And finally the function should look like this

def get_comp_move(board):
free_squares = get_free_squares(board)

winning_moves =
tied_moves = []
losing_moves =

[]
[]

for square in free_squares:
board[square] = comp_symbol
if check_winner(board):

winning_moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[9]
else:
for square in free_squares:
board[square] = comp_symbol
result = get move_outcomes(human_symbol, board)
if result == comp_symbol:
winning_moves.append(square)
elif result == "T":
tied_moves.append(square)
else:
losing_moves.append(square)
board[square] = " "

if len(winning _moves) > 0:
return winning_moves[0]
elif len(tied_moves) > 0:
return tied_moves[0]
else:
return losing_moves[9]

Full Code Lesson 6

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("------------- ")
print("|", board[®], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :
if board[0] == board[1] == board[2] != " ":
return True
elif board[3] == board[4] == board[5] != " ":
return True
elif board[6] == board[7] == board[8] != " ":
return True
if board[@] == board[3] == board[6] != " ":
return True
elif board[1] == board[4] == board[7] != " ":
return True
elif board[2] == board[5] == board[8] != " ":
return True

def

def

def

if board[0] == board[4] == board[8] != " ":
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

get_free_squares(board):
free_squares = []
for index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

get_comp_move(board):
free_squares = get_free_squares(board)

winning_moves = []
tied_moves = []
losing moves = []

for square in free_squares:
board[square] = comp_symbol
if check_winner(board):
winning_moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[9]
else:
for square in free_squares:
board[square] = comp_symbol

result = get_move_outcomes(human_symbol, board)

if result == comp_symbol:
winning_moves.append(square)
elif result == "T":
tied_moves.append(square)
else:
losing moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[9]
elif len(tied_moves) > 0:
return tied_moves[0]
else:
return losing_moves[0]

get_opposite_symbol(symbol):
if symbol == "@":

return "X"
else:

return "0"

def best_outcome_for_symbol(symbol, outcomes):
if symbol in outcomes:
return symbol
elif "T" in outcomes:
return "T"
else:
return get_opposite_symbol(symbol)

def get_move_outcomes(player_symbol, board):
free_squares = get_free_squares(board)

if len(free_squares) ==
return "T"

outcomes = []
for square in free_squares:
board[square] = player_ symbol
if check_winner(board):
outcomes.append(player_symbol)
else:
opponent_symbol = get opposite_symbol(player_symbol)
best_outcome = get_move_outcomes(opponent_symbol, board)
outcomes.append(best_outcome)
board[square] = " "

return best_outcome for symbol(player symbol, outcomes)

print("Welcome to Tic-Tac-Toe!")

comp_symbol = "X"

human_symbol = "0"

print("Welcome to Tic-Tac-Toe!")

player_0 = input("Who is playing naughts? ")
print("Welcome", player O, ", your symbol is 0O!")
board = [" ", " ", " ", v, oy oy
game_over = False

print_board(board)

Extension 9
symbol = random.choice([comp_symbol,human_symbol])
Extension 12
if symbol == human_symbol:
current_player = player_O
else:
current_player = "computer"
print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:

print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

Extension 13
if current_player == "computer":
square = get_comp_move(board)
else:
square = input("Which square do you want your symbol to go in? ™)
square_index = int(square)

Extension 9

if square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = get free_squares(board)
game_over = check_winner(board)
if game_over:
print(current_player, "won! Congratulations!"™)

elif counter == 9: # Extension 10
print("It's a tie!")
break

symbol = get_opposite_symbol(symbol)

if symbol == human_symbol:
current_player = player O
else:
current_player = "computer"

Copy your previous code here...

BONUS 6.5: Using a dictionary

e Most of the code for the bonus is provided above, it's just a matter of the student figuring out
where to slot them in, highlighted below in bold:

def get_comp_move(board):
free_squares = get_free_squares(board)
outcomes = {comp_symbol: [], "T": [], human_symbol: []}

for square in free_squares:
board[square] = comp_symbol
if check_winner(board):
outcomes[comp_symbol].append(square)
board[square] = " "

if len(outcomes[comp_symbol]) > 0:
return outcomes[comp_symbol][@]
else:
for square in free_squares:
board[square] = comp_symbol
result = get _move_outcomes(human_symbol, board)
outcomes[result].append(square)
board[square] = " "

if len(outcomes[comp_symbol]) > 0:
return outcomes[comp_symbol][©]
elif len(outcomes["T"]) > @:
return outcomes["T"][9]
else:
return outcomes[human_symbol][0]

BONUS 6.5: Using a dictionary

Start your code here# Copy your previous code here...
import random

Copy your previous code here...
def print_board(board):

print("-------------)
print("|", board[©], "|", board[1], "|", board[2], "|")
print("------------- ")
print("|", board[3], "|", board[4], "|", board[5], "|")
print("------------- ")
print("|", board[6], "|", board[7], "|", board[8], "|")
print("------------- ")

Be aware that students may have used the Option 2 code here
def check_winner(board) :

if board[@] == board[1] == board[2] != " ":
return True

elif board[3] == board[4] == board[5] != " "
return True

elif board[6] == board[7] == board[8] != " ":
return True

if board[@] == board[3] == board[6] != " ":
return True

elif board[1] == board[4] == board[7] != " ":
return True

elif board[2] == board[5] == board[8] != " ":
return True

if board[0] == board[4] == board[8] != " "
return True

elif board[2] == board[4] == board[6] != " ":
return True

else:
return False

def get_free_squares(board):
free_squares = []
for index, symbol in enumerate(board):
if symbol == " ":
free_squares.append(index)
return free_squares

def get_comp_move(board):
free_squares = get free_squares(board)

winning_moves = []
tied_moves = []
losing_moves = []

for square in free_squares:
board[square] = comp_symbol
if check _winner(board):
winning_moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[0]
else:
for square in free_squares:
board[square] = comp_symbol
result = get_move_outcomes(human_symbol, board)
if result == comp_symbol:
winning moves.append(square)
elif result == "T":
tied_moves.append(square)
else:
losing_moves.append(square)
board[square] = " "

if len(winning_moves) > 0:
return winning_moves[0]
elif len(tied moves) > 0:
return tied moves[9]
else:
return losing_moves[0]

def get_opposite_symbol(symbol):

if symbol == "0":
return "X"
else:
return "0"

def best_outcome_for_symbol(symbol, outcomes):
if symbol in outcomes:
return symbol
elif "T" in outcomes:
return "T"
else:
return get_opposite_symbol(symbol)

def get_move_outcomes(player_symbol, board):
free_squares = get_free_squares(board)

if len(free_squares) == 0:
return "T"

outcomes = []
for square in free_squares:
board[square] = player_symbol
if check_winner(board):
outcomes.append(player_symbol)
else:
opponent_symbol = get opposite_symbol(player_symbol)
best_outcome = get_move_outcomes(opponent_symbol, board)
outcomes.append(best_outcome)
board[square] = " "

return best_outcome_for_symbol(player_symbol, outcomes)

print("Welcome to Tic-Tac-Toe!")

comp_symbol = "X"

human_symbol = "0"

print("Welcome to Tic-Tac-Toe!")

player_0 = input("Who is playing naughts? ")
print("Welcome", player_O, ", your symbol is 0O!")
board = [" ", " ", ", v, oy
game_over = False

print_board(board)

Extension 9
symbol = random.choice([comp symbol,human_symbol])
Extension 12
if symbol == human_symbol:
current_player = player O
else:
current_player = "computer”
print(symbol, "player will go first!")
free_squares = [0,1,2,3,4,5,6,7,8]
counter = 0
while not game_over:
print("The current player is", current_player, "Who is playing as", symbol,"!")
#Extension 12

Extension 13
if current_player == "computer":
square = get comp _move(board)
else:
square = input("Which square do you want your symbol to go in? ")
square_index = int(square)

Extension 9

if square_index not in free_squares:
print("That wasn't a valid move!")
continue

board[square_index] = symbol

counter+=1

print_board(board)
free_squares = get_free_squares(board)
game_over = check_winner(board)
if game_over:
print(current_player, "won! Congratulations!")

elif counter == 9: # Extension 10
print("It's a tie!")
break

symbol = get opposite symbol(symbol)

if symbol == human_symbol:
current_player = player_O
else:
current_player = "computer"

	
	
	Girls’ Programming Network
	Tic Tac Toe!
	This project was created by GPN Australia for GPN sites all around Australia!
	
	Workbook 1
	Part 1: Welcome to Tic Tac Toe!
	Part 2: Enter the First Move
	
	Part 3: Creating a print function
	Part 4 : Taking Turns
	Part 5 : Wait a while to win?
	
	Part 6 : Winner winner tic tac dinner
	
	Part 7.1 : Option 1
	Option 1: If statements

	
	Part 7.2 : Option 2
	Option 2: For loop and lists

	Part 8 : Declare the winner
	Extensions
	
	Workbook 2
	Part 1: Adding a basic computer player
	
	Part 2: Making It Modular
	Part 3: Winning on the next turn
	
	Part 4: The best move for me!
	Part 6: Computer can’t be beat

