

Girls’ Programming Network

Tic Tac Toe!

Tutors Only

This project was created by GPN Australia for GPN sites all
around Australia!

This workbook and related materials were created by tutors at:

Sydney, Canberra and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers

Amanda Hogan
Isabella Hogan
Renee Noble

A massive thanks to our sponsors for supporting us!

Workbook 1

Part 1: Welcome to Tic Tac Toe!

1.4: Printing the Board

Copy your previous code here...​
print("Welcome to Tic-Tac-Toe!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
print("-------------")​
print("|", board[0], "|", board[1], "|", board[2], "|")​
print("-------------")​
print("|", board[3], "|", board[4], "|", board[5], "|")​
print("-------------")​
print("|", board[6], "|", board[7], "|", board[8], "|")​
print("-------------")

Part 2: Enter the First Move

2.3: Check what happened!

Copy your previous code here...​
print("Welcome to Tic-Tac-Toe!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
print("-------------")​
print("|", board[0], "|", board[1], "|", board[2], "|")​
print("-------------")​
print("|", board[3], "|", board[4], "|", board[5], "|")​
print("-------------")​
print("|", board[6], "|", board[7], "|", board[8], "|")​
print("-------------")​
​
symbol = "0"​
square = input("Which square do you want your symbol to go in? ")​
square _index = int(square)​
board[square_index] = symbol

Bonus 2.5: Welcome the players

Copy your previous code here...​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
print("-------------")​
print("|", board[0], "|", board[1], "|", board[2], "|")​
print("-------------")​
print("|", board[3], "|", board[4], "|", board[5], "|")​
print("-------------")​
print("|", board[6], "|", board[7], "|", board[8], "|")​
print("-------------")​
​
symbol = "0"​
square = input("Which square do you want your symbol to go in? ")​
square _index = int(square)​
board[square_index] = symbol

Part 3: Creating a print function

3.4: Let’s print the board again

Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
print_board(board)​
​
symbol = "0"​
square = input("Which square do you want your symbol to go in? ")​
square _index = int(square)​
board[square_index] = symbol​
​
print_board(board)

Part 4 : Taking Turns

4.3 Run your code!

Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
print_board(board)​
​
symbol = "0"​
print("The current player is", symbol, "!")​
square = input("Which square do you want your symbol to go in? ")​
square _index = int(square)​
board[square_index] = symbol​
​
print_board(board)​
if symbol == "0":​
 symbol = "X"​
else:​
 symbol = "0"

Part 5 : Wait a while to win?

5.2 Did I win yet?

Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
symbol = "0"​
while not game_over:​
 print("The current player is", symbol, "!")​
 square = input("Which square do you want your symbol to go in? ")​
 square _index = int(square)​
 board[square_index] = symbol​
​
 print_board(board)​
 if symbol == "0":​
 symbol = "X"​
 else:​
 symbol = "0"

Part 6 : Winner winner tic tac dinner

6.2 Functions again

Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")

def check_winner:

​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
symbol = "0"​
while not game_over:​
 print("The current player is", symbol, "!")​
 square = input("Which square do you want your symbol to go in? ")​
 square _index = int(square)​
 board[square_index] = symbol​
​
 print_board(board)​
 if symbol == "0":​
 symbol = "X"​
 else:​
 symbol = "0"

Part 7.1 : Option 1

7.1.4 No winners here!

Option 1: If statements
def check winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False

Part 7.2 : Option 2

7.1.4 No winners here!

Option 2: For loop and lists
def check winner(board) : ​
 winning combos = [​
 # Rows ​
 (0,1,2),​
 (3,4,5),​
 (6,7,8),​
 # Columns ​
 (0,3,6),​
 (1,4,7),​
 (2,5,8),​
 # Diagonals​
 (0,4,8),​
 (2,4,6)​
]​
​
 for combo in winning_combos: ​
 combo_part_0 = combo[0] ​
 combo_part_1 = combo[1]​
 combo_part_2 = combo[2]​
 symbol_0 = board[combo_part_0]​
 symbol_1 = board[combo_part_1]​
 symbol_2 = board[combo_part_2]​
 if symbol_0 == symbol_1 == symbol_2 == " ": ​
 return True ​
 return False

Part 8 : Declare the winner

8.2 Declare who won

Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")

Be aware that students may have used the Option 2 code here

def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
symbol = "0"​
while not game_over:​
 print("The current player is", symbol, "!")​
 square = input("Which square do you want your symbol to go in? ")​

 square_index = int(square)​
 board[square_index] = symbol​
​
 print_board(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(symbol, "won! Congratulations!")​
 if symbol == "0":​
 symbol = "X"​
 else:​
 symbol = "0"

Extensions

All extensions commented with which

import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
player_X = input("Who is playing crosses? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
print("Welcome", player_X, ", your symbol is X!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice("X","O")​

Extension 12​
if symbol == "O":​
 current_player = player_O​
else:​
 current_player = player_X​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = random.choice(free_squares)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares.remove(square_index)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
​
 if symbol == "0":​
 current_player = player_X​
 symbol = "X"​
 else:​
 current_player = player_O​
 symbol = "0"

Workbook 2
Part 1: Adding a basic computer player

1.4: Let the computer choose

●​ At the top of the file, make sure the student is importing the random function!
import random

●​ And then in the game loop, the square_index will be set like this:
square = input("Which square do you want to choose? ")​
square_index = int(square)​
if symbol == human_symbol:​
 square = input("Which square do you want to choose? ")​
 square_index = int(square)​
else:​
 square_index = random.choice(free_squares)

BONUS 1.5: Stop the silly humans

●​ Students will just need to add an if statement like this, in bold:

if symbol == human_symbol:​
 square = input("Which square do you want to choose? ")​
 square_index = int(square)​
​
 if square_index not in free_squares:​
 print("You can't place a symbol on that tile, it's already taken!")​
 continue​
else:​
 square_index = random.choice(free_squares)

Full code for lesson 1

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is 0!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice(["X","0"])​
Extension 12​
if symbol == "0":​

 current_player = player_O​
else:​
 current_player = player_X​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = random.choice(free_squares)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = []​
 for i, square in enumerate(board):​
 if square == " ":​
 free_squares.append(i)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
​
 if symbol == "0":​
 current_player = player_X​
 symbol = "X"​
 else:​
 current_player = player_O​
 symbol = "0"

Part 2: Making It Modular

2.3 Switching turns

●​ Make sure the student has removed the free_squares list from the game loop. The new
function should look like this:

def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares

●​ Note that if the student completed Bonus 1.5, they will to update that bit of code to call the new
function, like this:

if square_index not in get_free_squares(board):​
 print("You can't place a symbol on that tile!")​
 continue

The new function should look like this:

def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 return random.choice(free_squares)

●​ And then in the game loop, the get_comp_move will be called like this:

if symbol == human_symbol:​
 square = input("Which square do you want to choose? ")​
 square_index = int(square)​
else:​
 square_index = get_comp_move(board)

●​ The new function should look like this:

def get_other_symbol(symbol):​
 if symbol == comp_symbol:​
 return human_symbol​
 else:​
 return comp_symbol

●​ And then in the game loop, the function will be called like this:

elif counter == 9:​
 print("Game over! It's a tie!")​

 break​
​
symbol = get_other_symbol(symbol)

Full code Lesson 2

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 return random.choice(free_squares)​

​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return "X"​
 else:​
 return "0"​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is 0!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice(["X","0"])​
Extension 12​
if symbol == "0":​
 current_player = player_O​
else:​
 current_player = player_X​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​

 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)

Part 3: Winning on the next turn

3.1 Play to win

●​ The get_comp_move function should now look like this:

def get_comp_move(board):​
 free_squares = get_free_squares(board)​
​
 winning_moves = []​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
 ​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 else:​
 return random.choice(free_squares)

●​ Note, the student could also write len(winning_moves) >= 1 or len(winning_moves) != 0.

Full Code Lesson 3

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​

 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 winning_moves = []​
 free_squares = get_free_squares(board)​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 return random.choice(free_squares)​
​
​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return "X"​
 else:​
 return "0"​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​

human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is 0!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice(["X","0"])​
Extension 12​
if symbol == "0":​
 current_player = player_O​
else:​
 current_player = player_X​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)​
 if symbol == "0":​
 current_player = player_O​
 else:​
 current_player = "computer"

Part 4: The best move for me!

4.4 Check your work

●​ The new function should look like this:

def best_outcome_for_symbol(player_symbol, outcomes):​
 if player_symbol in outcomes:​
 return player_symbol​
 elif "T" in outcomes:​
 return "T"​
 else:​
 return get_other_symbol(player_symbol)

●​ Although it might also look like this, which is also correct:

def best_outcome_for_symbol(player_symbol, outcomes):​
 best_outcome = get_other_symbol(player_symbol)​
 if player_symbol in outcomes:​
 best_outcome = player_symbol​
 elif "T" in outcomes:​
 best_outcome = "T"​
 return best_outcome

Full Code Lesson 4

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​

 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 winning_moves = []​
 free_squares = get_free_squares(board)​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 return random.choice(free_squares)​
​
​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return "X"​
 else:​
 return "0"​
​
def best_outcome_for_symbol(symbol, outcomes):​
 if symbol in outcomes:​
 return symbol​
 elif "T" in outcomes:​
 return "T"​
 else:​
 return get_other_symbol(player_symbol)​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is 0!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​

print_board(board)​
​
Extension 9​
symbol = random.choice(["X","0"])​
Extension 12​
if symbol == "0":​
 current_player = player_O​
else:​
 current_player = "computer"​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)​
 if symbol == "0":​
 current_player = player_O​
 else:​
 current_player = "computer"

​

Part 5: The next, next, next moves​

5.5 Space to place, but no way to win!

●​ The function should look like this:

def get_move_outcomes(player_symbol, board):​
 free_squares = get_free_squares(board)​
​
 if len(free_squares) == 0:​
 return "T"​
​
 outcomes = []​
 for square in free_squares:​
 board[square] = player_symbol​
 if check_winner(board):​
 outcomes.append(player_symbol)​
 else:​
 opponent_symbol = get_other_symbol(player_symbol)​
 best_outcome = get_move_outcomes(opponent_symbol, board)​
 outcomes.append(best_outcome)​
 board[square] = " "​
​
 return best_outcome_for_symbol(player_symbol, outcomes)

●​ There is no reason why the student can’t append the result directly to the list. Just let them do
whatever makes the most sense to them!

outcomes.append(get_move_outcomes(opponent_symbol, board))

Full Code Lesson 5

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​

 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 winning_moves = []​
 free_squares = get_free_squares(board)​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 return random.choice(free_squares)​
​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return = "X"​
 else:​
 return "0"​
​
def best_outcome_for_symbol(symbol, outcomes):​
 if symbol in outcomes:​
 return symbol​
 elif "T" in outcomes:​
 return "T"​
 else:​
 return get_other_symbol(player_symbol)​

​
def get_move_outcomes(symbol, board):​
 free_squares = get_free_squares(board)​
 if len(free_squares) == 0:​
 return "T"​
 results = []​
 for square in free_squares:​
 board[square] = symbol​
 if check_winner(board):​
 results.append(symbol)​
 else:​
 symbol = get_opposite_symbol(symbol)​
 results.append(get_move_outcomes(symbol, board))​
 board[square] = " "​
 return best_outcome_for_symbol(symbol, results)​
 ​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is 0!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice([comp_symbol,human_symbol])​
Extension 12​
if symbol == human_symbol:​
 current_player = player_O​
else:​
 current_player = "computer"​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​

 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)​
 if symbol == human_symbol:​
 current_player = player_O​
 else:​
 current_player = "computer"​

Part 6: Computer can’t be beat

6.3 Choosing your favourite

●​ And finally the function should look like this

def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 ​
 winning_moves = []​
 tied_moves = []​
 losing_moves = []​
 ​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​

 winning_moves.append(square)​
 board[square] = " "​
​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 else:​
 for square in free_squares:​
 board[square] = comp_symbol​
 result = get_move_outcomes(human_symbol, board)​
 if result == comp_symbol:​
 winning_moves.append(square)​
 elif result == "T":​
 tied_moves.append(square)​
 else:​
 losing_moves.append(square)​
 board[square] = " "​
 ​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 elif len(tied_moves) > 0:​
 return tied_moves[0]​
 else:​
 return losing_moves[0]

Full Code Lesson 6

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​

 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 ​
 winning_moves = []​
 tied_moves = []​
 losing_moves = []​
 ​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 else:​
 for square in free_squares:​
 board[square] = comp_symbol​
 result = get_move_outcomes(human_symbol, board)​
 if result == comp_symbol:​
 winning_moves.append(square)​
 elif result == "T":​
 tied_moves.append(square)​
 else:​
 losing_moves.append(square)​
 board[square] = " "​
 ​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 elif len(tied_moves) > 0:​
 return tied_moves[0]​
 else:​
 return losing_moves[0]​
​
​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return "X"​
 else:​

 return "0"​
​
def best_outcome_for_symbol(symbol, outcomes):​
 if symbol in outcomes:​
 return symbol​
 elif "T" in outcomes:​
 return "T"​
 else:​
 return get_opposite_symbol(symbol)​
​
def get_move_outcomes(player_symbol, board):​
 free_squares = get_free_squares(board)​
​
 if len(free_squares) == 0:​
 return "T"​
​
 outcomes = []​
 for square in free_squares:​
 board[square] = player_symbol​
 if check_winner(board):​
 outcomes.append(player_symbol)​
 else:​
 opponent_symbol = get_opposite_symbol(player_symbol)​
 best_outcome = get_move_outcomes(opponent_symbol, board)​
 outcomes.append(best_outcome)​
 board[square] = " "​
​
 return best_outcome_for_symbol(player_symbol, outcomes)​
​
 ​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice([comp_symbol,human_symbol])​
Extension 12​
if symbol == human_symbol:​
 current_player = player_O​
else:​
 current_player = "computer"​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​

 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)​
 if symbol == human_symbol:​
 current_player = player_O​
 else:​
 current_player = "computer"​
​
​
​
Copy your previous code here...

BONUS 6.5: Using a dictionary

●​ Most of the code for the bonus is provided above, it’s just a matter of the student figuring out
where to slot them in, highlighted below in bold:

def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 outcomes = {comp_symbol: [], "T": [], human_symbol: []}​
​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 outcomes[comp_symbol].append(square)​
 board[square] = " "​
​
 if len(outcomes[comp_symbol]) > 0:​
 return outcomes[comp_symbol][0]​
 else:​
 for square in free_squares:​
 board[square] = comp_symbol​
 result = get_move_outcomes(human_symbol, board)​
 outcomes[result].append(square)​
 board[square] = " "​
 ​
 if len(outcomes[comp_symbol]) > 0:​
 return outcomes[comp_symbol][0]​
 elif len(outcomes["T"]) > 0:​
 return outcomes["T"][0]​
 else:​
 return outcomes[human_symbol][0]

BONUS 6.5: Using a dictionary

Start your code here# Copy your previous code here...​
import random​
​
Copy your previous code here...​
def print_board(board):​
 print("-------------")​
 print("|", board[0], "|", board[1], "|", board[2], "|")​
 print("-------------")​
 print("|", board[3], "|", board[4], "|", board[5], "|")​
 print("-------------")​
 print("|", board[6], "|", board[7], "|", board[8], "|")​
 print("-------------")​
Be aware that students may have used the Option 2 code here​
def check_winner(board) : ​
 if board[0] == board[1] == board[2] != " ":​
 return True ​
 elif board[3] == board[4] == board[5] != " ":​
 return True ​
 elif board[6] == board[7] == board[8] != " ":​
 return True ​
 if board[0] == board[3] == board[6] != " ":​
 return True ​
 elif board[1] == board[4] == board[7] != " ":​
 return True ​
 elif board[2] == board[5] == board[8] != " ":​
 return True​
 if board[0] == board[4] == board[8] != " ":​
 return True ​
 elif board[2] == board[4] == board[6] != " ":​
 return True ​
 else:​
 return False​
​
def get_free_squares(board):​
 free_squares = []​
 for index, symbol in enumerate(board):​
 if symbol == " ":​
 free_squares.append(index)​
 return free_squares​
​
def get_comp_move(board):​
 free_squares = get_free_squares(board)​
 ​
 winning_moves = []​
 tied_moves = []​
 losing_moves = []​
 ​
 for square in free_squares:​
 board[square] = comp_symbol​
 if check_winner(board):​
 winning_moves.append(square)​
 board[square] = " "​
​

 if len(winning_moves) > 0:​
 return winning_moves[0]​
 else:​
 for square in free_squares:​
 board[square] = comp_symbol​
 result = get_move_outcomes(human_symbol, board)​
 if result == comp_symbol:​
 winning_moves.append(square)​
 elif result == "T":​
 tied_moves.append(square)​
 else:​
 losing_moves.append(square)​
 board[square] = " "​
 ​
 if len(winning_moves) > 0:​
 return winning_moves[0]​
 elif len(tied_moves) > 0:​
 return tied_moves[0]​
 else:​
 return losing_moves[0]​
​
​
def get_opposite_symbol(symbol):​
 if symbol == "0":​
 return "X"​
 else:​
 return "0"​
​
def best_outcome_for_symbol(symbol, outcomes):​
 if symbol in outcomes:​
 return symbol​
 elif "T" in outcomes:​
 return "T"​
 else:​
 return get_opposite_symbol(symbol)​
​
def get_move_outcomes(player_symbol, board):​
 free_squares = get_free_squares(board)​
​
 if len(free_squares) == 0:​
 return "T"​
​
 outcomes = []​
 for square in free_squares:​
 board[square] = player_symbol​
 if check_winner(board):​
 outcomes.append(player_symbol)​
 else:​
 opponent_symbol = get_opposite_symbol(player_symbol)​
 best_outcome = get_move_outcomes(opponent_symbol, board)​
 outcomes.append(best_outcome)​
 board[square] = " "​
​

 return best_outcome_for_symbol(player_symbol, outcomes)​
​
 ​
​
print("Welcome to Tic-Tac-Toe!")​
comp_symbol = "X"​
human_symbol = "0"​
print("Welcome to Tic-Tac-Toe!")​
player_O = input("Who is playing naughts? ")​
​
print("Welcome", player_O, ", your symbol is O!")​
board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]​
game_over = False​
print_board(board)​
​
Extension 9​
symbol = random.choice([comp_symbol,human_symbol])​
Extension 12​
if symbol == human_symbol:​
 current_player = player_O​
else:​
 current_player = "computer"​
print(symbol,"player will go first!")​
free_squares = [0,1,2,3,4,5,6,7,8]​
counter = 0​
while not game_over:​
 print("The current player is", current_player, "Who is playing as", symbol,"!")

#Extension 12​
​
 # Extension 13​
 if current_player == "computer":​
 square = get_comp_move(board)​
 else:​
 square = input("Which square do you want your symbol to go in? ")​
 square_index = int(square)​
​
 # Extension 9​
 if square_index not in free_squares:​
 print("That wasn't a valid move!")​
 continue​
 board[square_index] = symbol​
 counter+=1​
​
 print_board(board)​
 free_squares = get_free_squares(board)​
 game_over = check_winner(board)​
 if game_over:​
 print(current_player, "won! Congratulations!")​
 elif counter == 9: # Extension 10​
 print("It's a tie!")​
 break​
​
 symbol = get_opposite_symbol(symbol)​

 if symbol == human_symbol:​
 current_player = player_O​
 else:​
 current_player = "computer"​

	
	
	Girls’ Programming Network
	Tic Tac Toe!
	This project was created by GPN Australia for GPN sites all around Australia!
	
	Workbook 1
	Part 1: Welcome to Tic Tac Toe!
	Part 2: Enter the First Move
	
	Part 3: Creating a print function
	Part 4 : Taking Turns
	Part 5 : Wait a while to win?
	
	Part 6 : Winner winner tic tac dinner
	
	Part 7.1 : Option 1
	Option 1: If statements

	
	Part 7.2 : Option 2
	Option 2: For loop and lists

	Part 8 : Declare the winner
	Extensions
	
	Workbook 2
	Part 1: Adding a basic computer player
	
	Part 2: Making It Modular
	Part 3: Winning on the next turn
	
	Part 4: The best move for me!
	Part 6: Computer can’t be beat

