
Welcome to the Labs

Tamagotchi! - Micro:bits

Welcome to the labs!

Thank you to our Sponsors!

Platinum Sponsor:

Gold Sponsor:

Who are the tutors?

Who are you?

Get to know you BINGO

Grab a printed BINGO sheet & pen

● Read each square

● Find a new friend who can

complete any of the squares

● Write their name in the square -

you can only put their name in

ONE box!

● TUTORS TOO!

Link for printing BINGO sheet

https://docs.google.com/document/d/1m3JfhtkBFjaFFjfNcj3vJnmxfPrPzUQc/edit?usp=sharing&ouid=110620649160942107168&rtpof=true&sd=true

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

Click on your location

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Log on

Click on your Room picture

You can see:

● A link to the Workbook

● These Slides (to take a look back on or go on ahead)

● Other helpful bits like a Cheatsheet to help you code

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given you
a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

print('This example is not part of the project’)

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do something extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Today’s project!

Tamagotchi - Micro:Bit

Tamagotchi

● You’re going to make your own Tamagotchi
electronic pet using a micro:bit

● Tamagotchi pets were a worldwide fad
created in Japan in 1996

● Give your pet a name and write some code
to feed it, play with it and let it sleep

● Don’t let it get hungry, bored or sleepy!

● Keep it alive, watch it grow and change

Tamagotchi

Sadly you can’t keep them at the end of the day. 😥

If you want one for home (maybe for
christmas or your birthday!) they’re
about $25 .

Find out where to buy them here:
https://microbit.org/

https://microbit.org/

Intro to Micro:Bit

What is a Micro:Bit?

Buttons: We can press these
and tell the Micro:Bit to do
different things

Lights: We can turn each light
on or off to make different
images

Pins: These let us connect the
Micro:Bit to other devices using
wires

Button A Button B

Lights!

Pins

Front

What is a Micro:Bit?

Reset button
Input

Input: Where we connect the cable
from the computer to transfer our
code/power to our Micro:Bit

Reset button: Let’s you stop your
code and starts it again

Battery connection: You can use
your micro:bit even when it is not
plugged into your computer! Ask you
tutor for a battery pack if you need
one.

Accelerometer: The Micro:bit can tell
us when it is accelerated - so it
knows when we shake it!

Back

Battery
connection

Accelerometer

Using python.microbit.org

Go to python.microbit.org

Today we will be using python.microbit.org to program our Micro:Bits.

You should see this page pop up!

http://python.microbit.org

python.microbit.org

This is where we code

This is the simulator where we
test our code

How do we write code for it?

Micro:Bits use Python, which is the programming language that we usually
teach here at GPN!

Always make sure this line is at the top of your code!

This lets us use lights, sounds, buttons and lots of other cool in our Python
code for the Micro:Bit

from microbit import *

The Display

Your Micro:Bit has a 5 x 5 display grid of little red LEDs on the front!

You can do some cool stuff with the display like:

Show an image, like a heart!

Scroll a word across the display, like ‘Hello’

This code is in your python.makecode.org coding space - have a look

It’s indented in a while loop - so it will repeat forever

Using the Simulator

● Click the arrow on the Simulator to run the code
● A heart is displayed for 1 second and then ‘Hello’

Restart

Stop

We can run our code on the Simulator or the real
micro:bit!

Stop, Restart, Simulator settings are underneath

Connect the Micro:Bit

● Tutors will hand out the micro:bits & cables

● Connect the small end of the cable to the top
of micro:bit

● Connect the other end to computer USB port

● New micro:bits will play a “Meet the Microbit”
program for you to follow:
○ Push the buttons
○ Shake
○ Tilt to catch flashing LED
○ Clap a few times

● The tutors will help you

Run the code on the Micro:Bit (Chrome/Edge)

It’s fun to mess around with the Micro:Bit on the simulator.

Now let’s see your code on a Micro:Bit in real life!

Run your code on your Micro:Bit like this

1. Make sure your Micro:Bit is plugged into your computer
2. Click bottom left
3. Follow the prompts
4. Choose your micro:bit and click CONNECT
5. Wait for the red light on the back of your micro:bit to stop flashing
6. Your code should be running on the micro:bit!

You should see a HEART displayed for 1 second and then HELLO

Want your code to start again? Press black “reset” button on the back

Chrome or Edge

Run the code on the Micro:Bit (other browser)

This is for if you don’t have the Chrome or Edge browser (eg Safari)

Run your code on your Micro:Bit like this

1. Make sure your Micro:Bit is plugged into your computer
2. Click bottom left
3. Click Close when you get a popup
4. Name your project and click Confirm and Save
5. Follow the instructions on the popup (drag the file from your

downloads folder to the MICROBIT device)
6. Wait for the red light on the back of your micro:bit to stop flashing
7. Your code should be running on the micro:bit!

You should see a HEART displayed for 1 second and then HELLO
Want your code to start again? Press black “reset” button on the back

Scroll… Scroll… Scroll… on the micro:bit

Words are too big to display within a 5x5 grid of lights.

Remember we can display words with display.scroll().

Sometimes the text scrolls across too slowly - you can speed it up with delay.

A smaller delay (eg 100 results in faster scrolling).

The default speed is 150!

display.scroll('Hello World')

display.scroll('Hello World', delay=100)

Multiple Instructions

What happens if we want to change the speed AND join variables with strings?

This is how you would do it! :)

Without a sleep, the computer will run through the code so quickly, and we will only
see a CONFUSED face.

See that we need to use str() to convert the number win_count to a string
before we can join it (+) with the the other string!

win_count = 3
display.scroll('Wins: '+ str(win_count), delay=75)

Message delay

Sleep… zzz! … on the micro:bit

Computers are really fast, sometimes our program moves too quickly to
enjoy it!

For example:

We can slow it down by using sleep()

Sleep is done in milliseconds (so the number of seconds x 1000)

display.show(Image.HAPPY)
sleep(1000)
display.show(Image.SAD)
sleep(1000)
display.show(Image.CONFUSED)
sleep(1000)

Without a sleep, the
computer will run

through the code so
quickly, and we will only
see a CONFUSED face.

Comments

● We use comments to write things in our code for humans!
● The computer ignores comments
● Comments start with a #

● Programmers use comments to explain what their code does
● You can ‘comment out’ code to stop it from running

Have a look at the code in the coding space - can you see the
purple comments lines starting with the #

This code was written by Alex

Mistakes are Great! Errors on the Micro:bit!

● Programmers make A LOT of errors!
● Error messages give us hints on how to fix the problem
● Mistakes don’t break computers!

I ❤
errors!● Lots of unexpected words on the

micro:bit is an error message
● Run on the simulator to see it better

We can learn from our mistakes!

2. What went wrong1. Where the error is

● In your code - red dot at the start of the line
● Put the cursor over than line of code to get a hint

Project Time!

Let’s use our MicroBit!

Try Parts 0 & 1 of your Workbook!

 The tutors will be around to help!

While Loops

Loops

We know how
to do things
on repeat!

Sometimes
we want to do
some code on
repeat!

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

What do you think this does?

Introducing … while loops!

What do you think this does?

i = 0
while i < 3:
 print(i)
 i = i + 1

Introducing … while loops!

Stepping through a while loop...

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0

MY VARIABLES

Set the
variable

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0

MY VARIABLES

0 is less
than 3 !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0

MY VARIABLES

Print !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1

MY VARIABLES

UPDATE
TIME !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1

MY VARIABLES

Take it
from the

top !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1

MY VARIABLES

1 is less
than 3 !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1

MY VARIABLES

Print !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2

MY VARIABLES

UPDATE
TIME !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2

MY VARIABLES

Take it
from the

top !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2

MY VARIABLES

2 is less
than 3 !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2

MY VARIABLES

Print !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2
i = 3

MY VARIABLES

UPDATE
TIME !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2
i = 3

MY VARIABLES

Take it
from the

top !

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

One step at a time!
i = 0
i = 1
i = 2
i = 3

MY VARIABLES

3 IS NOT
less than

3 !

We are
are done
with this

loop!

Introducing … while loops!

i = 0
while i < 3:
 display.scroll(i)
 i = i + 1

Initialise the loop
variable Loop condition

Code to repeat

Update the loop
variable

What happens if we forget to update the loop variable?

i = 0
while i < 3:
 display.scroll(i)

What happens when…..

What happens if we forget to update the loop variable?

i = 0
while i < 3:
 display.scroll(i)

What happens when…..

Infinite loop!

Sometimes we want our loop to go forever!
So we set a condition that is always True!

We can even just write True!

while True:
 display.scroll("Are we there yet?")

Infinite loop!

Sometimes we want our loop to go forever!
So we set a condition that is always True!

We can even just write True!

while True:
 print("Are we there yet?")

while True:
 display.scroll("Are we there yet?")

Are we there yet? Are we there yet?

Micro:Bit Inputs

Conditions!

Conditions let us make a decision.
First we test if the condition is met!
Then maybe we’ll do the thing

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

That’s the
condition!

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

That’s the
condition!

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

True

Put in the
answer to
the question

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

Conditions

So to know whether to do something, they find out if it’s True!

What do you think happens?
>>>

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

True

Conditions

So to know whether to do something, they find out if it’s True!

What do you think happens?
>>> that’s a small number

fave_num = 5
if fave_num < 10:
 display.scroll("that’s a small number")

True

Buttons!

Your Micro:Bit has 2 buttons: Button A and Button B

You can use this code to check if a button is pressed:

The statement will be TRUE if the button is being
pressed at that time and it will be FALSE if it is not being
pressed

if button_a.was_pressed():

If button_b.was_pressed():

Buttons!

What do you think this code does?

if button_a.is_pressed():
display.show(Image.HAPPY)

if button_b.is_pressed():
display.show(Image.SAD)

If button a is pressed when the Micro:Bit gets to this line of code then what
happens?

If button b is pressed when the Micro:Bit gets to this line of code then what
happens

What do you think happens if both button a AND button b are being
pressed?

The Micro:Bit shows a Sad face

Buttons!

What do you think this code does?

if button_a.is_pressed():
display.show(Image.HAPPY)

if button_b.is_pressed():
display.show(Image.SAD)

If button a is pressed when the Micro:Bit gets to this line of code then what
happens?

If button b is pressed when the Micro:Bit gets to this line of code then what
happens

What do you think happens if both button a AND button b are being
pressed?

The Micro:Bit shows a Sad face

The Micro:Bit shows a Happy face

Buttons!

What do you think this code does?

if button_a.is_pressed():
display.show(Image.HAPPY)

if button_b.is_pressed():
display.show(Image.SAD)

If button a is pressed when the Micro:Bit gets to this line of code then what
happens?

If button b is pressed when the Micro:Bit gets to this line of code then what
happens

What do you think happens if both button a AND button b are being
pressed?

The Micro:Bit shows a Sad face

The Micro:Bit shows a Happy face

Pin Logo!

Your Micro:Bit has touch sensitive pin logo at the top of the Micro:bit.

You can use this code to check if the pin logo is being touched.

Pin Logo

if pin_logo.is_touched():

Running Time

Sometimes you want to time things. Like, for example, if you wanted to put
a time limit on a game and see how many points you can get in 30 seconds!

To figure out how long the Micro:Bit program has been running (in
milliseconds) you can use this command:

What would running_time() be after 4 seconds?

What about after 10 and a half seconds?

time = running_time()

4000

10,500

Running Time

Sometimes you want to time things. Like, for example, if you wanted to put
a time limit on a game and see how many points you can get in 30 seconds!

To figure out how long the Micro:Bit program has been running (in
milliseconds) you can use this command:

What would running_time() be after 4 seconds?

What about after 10 and a half seconds?

time = running_time()

4000

10,500

Running Time

Sometimes you want to time things. Like, for example, if you wanted to put
a time limit on a game and see how many points you can get in 30 seconds!

To figure out how long the Micro:Bit program has been running (in
milliseconds) you can use this command:

What would running_time() be after 4 seconds?

What about after 10 and a half seconds?

time = running_time()

4000

10,500

Accelerometer!

Your micro:bit has a motion sensor.

This sensor has the ability to detect when you tilt it left to right, backwards
and forwards and up and down.

To use the accelerometer, we need a while loop. You can use this code to
detect when the micro:bit has been shaken:

while True:
 if accelerometer.was_gesture('shake'):

Information
from the sensor

Accelerometer!

What do you think this code does?

while True:
 if accelerometer.was_gesture('shake'):
 display.scroll('I’m getting dizzy')

Accelerometer!

What do you think this code does?

while True:
 if accelerometer.was_gesture('shake'):
 display.scroll('I’m getting dizzy')

It will display ‘I’m getting dizzy’ every time the micro:bit is shaken

Functions!

Simpler, less repetition, easier to read code!

How functions fit together!

Functions are like factories!

Running a factory doesn’t mean doing all the work
yourself, you can get other factories to help you out!

Your main factory!

Timber Mill

Metal Worker

Cupcake factory

How functions fit together!

Functions are like factories!

Asking other factories to do some work for you makes
your main task simper. You can focus on the
assembly!

Your main factory!I’d like to place an
order for a piece
of wood. 2 meters
by 1.5 meters.

Sure thing!
Coming
right away!

Order

Delivery

Order

Delivery

Can I order 4
metal poles
please! 80cm
long.

Timber Mill

Cupcake factory

Metal Worker

It will be
delivered
straight
away!

How functions fit together!

Functions are like factories!
Your main factory!

Timber Mill

Metal Worker

Cupcake factory

Look at this beautiful
table I made!

Outsourcing made it
simple!

How functions fit together!

You can write a bunch of

helpful functions to

simplify your main goal!

Your main code!
Helps with printing

nicely

Does
calculationsUses stats

to make
decisions

You can write these

once and then use

them lots of times!

They can be

anything you like!

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

What do these do?:

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

What do these do?:

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

What do these do?:

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> len("Hello world")
11

What do these do?:

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Defining your own functions

Built in functions are great! But sometimes we want
custom functions!

Defining our own functions means:

● We cut down on repeated code

● Nice function names makes our code clear and easy to read

● We can move bulky code out of the way

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

When using a function in a script make
sure you define the function first.

It doesn’t matter if you call it from inside
another function though!

Functions often need extra information

Functions are more useful if we can change what they do
We can do this by giving them arguments (aka parameters)

Here, we give the hello() function a name

Any string will work

>>> def hello(person):
... display.scroll('Hello, ' + person + ', how
are you?')
>>> hello('Alex')
Hello, Alex, how are you?

>>> hello('abcd')
Hello, abcd, how are you?

Functions can take multiple arguments

Often we want to work with multiple pieces of information.

You can actually have as many parameters as you like!

This function takes two numbers, adds them together and prints
the result.

>>> def add(x, y):
... display.scroll(x + y)
>>> add(3, 4)
7

Arguments stay inside the function

The arguments are not able to be accessed outside of the function
declaration.

>>> def hello(person):
... display.scroll('Hello, ' + person + '!')
>>> display.scroll(person)
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
NameError: name 'person' is not defined

Variables stay inside the function

Neither are variables made inside the function. They are local variables.

>>> def add(x, y):
... z = x + y
... display.scroll(z)
>>> add(3, 4)
7
>>> z
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined

Global variables are not affected

Changing a variable in a function only changes it inside the function.

>>> z = 1
>>> def add(x, y):
... z = x + y
... display.scroll(z)
>>> add(3, 4)
7

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
... z = x + y
... display.scroll(z)
>>> add(3, 4)
7

>>> display.scroll(z)

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
... z = x + y
... display.scroll(z)
>>> add(3, 4)
7

>>> display.scroll(z)
1

Recap: A function signature

def add(x, y):

>>> add(2, 3)

the def keyword function name
function arguments

function name function arguments

definition

callsite

Project time!

Now go be functional.

Do the next part of the project!
Try to do Part 4-6

 The tutors will be around to help!

Micro:Bit Radio

We can use the radio to talk to each other!

All of your Micro:bits have the ability to send and receive radio messages.
We are going to use this to make our Micro:bits communicate.

To send radio messages, our Micro:bits send out special invisible light
waves at different times to symbolise a series of 1s and 0s, which other
Micro:bits can then translate into words and information.

Radio

Your Micro:Bit can send messages to other Micro:Bits using radio waves!

It only takes a few lines of code to make this work!

1. We have to tell the Micro:Bit that we want to use the radio:

2. We need to turn the Radio on:

3. We need to send a message:

4. We want to receive a message:

import radio

radio.on()

radio.send(“Hello World”)

message = radio.receive()

We need to set our radio to communicate on a certain group, otherwise all
our Micro:Bits will try to talk to each other! This will get confusing for the
Micro:Bit.

After you turn the radio on, set the group channel!

radio.config(group=100)

Your tutors will give you a group number to use.

Radio Groups

Radio Example

What :do you think this code does?

Micro:Bit 1 Micro:Bit 2

Why do you think it’s important to check the message?

import radio

radio.on()
radio.config(group=100)

while True:
if button_a.is_pressed():

radio.send(“Hello!”)

if button_b.is_pressed():
radio.send(“World!”)

import radio

radio.on()
radio.config(group=100)

while True:
message = radio.receive()
if message:

display.scroll(message)

