

Girls’ Programming Network

Tamagotchi with Micro:Bits!

Tutors Only

This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney, Melbourne and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Sande Dalton
Paige Reeves

Sheree Pudney
Amanda Hogan
Isabella Hogan

| 1

Part 0: Setting up

Task 0.1: micro:bits and pieces

Let’s set up the micro:bit for programming today! You should have:

-​ 1 micro:bit chip
-​ 1 USB cable

1.​ Connect the small end of the USB cord to the middle port of the micro:bit
2.​ Connect the big end of the cord to your computer
3.​ Go to python.microbit.org

Task 0.2: Micro playground

First we’re going to play around with the displays on python.microbit.org and test
them on our micro:bits.

1.​ Make sure from microbit import * is at the top of your code.
2.​ Change the code under the while True: loop to display a duck and scroll your name

instead using display.show(Image.DUCK), sleep(1000) and
display.scroll("Your name")

3.​ Click the ‘Send to micro:bit’ button, then follow the steps on the screen.
4.​ Try this out with other words and pictures.

Hint: Cheat sheets

Don’t forget you have cheat sheets on the web page to help you code!
Remember to indent the code below the while loop!

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You are have connected your micro:bit to the computer

☐ You can display different pictures and words

| 2

Today’s Project Plan -
Tamagotchi

We’re going to make a Tamagotchi electronic pet! ​
By pressing buttons and moving the micro:bit you can

interact with the pet to keep it happy and alive.

Start off by giving your pet a name!!

Show the pet’s name, age, sleepiness, boredom
and hunger.

Add the ability to play with, feed or send the pet
to sleep.

Clean up the code!

Make the ability for the pet to die, but keep it alive!

Watch your pet grow up.

​

​

| 3

Once your base pet works add cool extensions!

 Part 1: Welcome to Tamagotchi!
Task 1.1: Name your file!

Now you’ve been introduced to your micro:bit, let’s start working on the project!

1.​ At the top of the page, edit your project name to be ‘tamagotchi’.

2.​ At the top of your code, use a comment to write your name

Task 1.2: Welcome

Let’s welcome our user and get things set up!

Before the while true loop, add the following:

1.​ Use display.scroll to say “Welcome to Tamagotchi”​

2.​ Create some variables for our pet!
a.​ Name (set this to whatever you want!)
b.​ Hunger, boredom and sleepiness should all be set to 0

 CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Your Micro:bit scrolls the welcome message!

☐ You’ve tried it on your physical Micro:bit

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE NOT TESTED YET

Name
Imports go at the top
from microbit import *

| 4

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
while True:
 display.show(Image.DUCK)
 sleep (1000)
 display.scroll("Isabella")

| 5

Part 2: Seeing our pet! t with your
Task 2.1: Shake it like a polaroid picture

If the Micro:Bit has been shaken, we want to display all of the current details about our
pet. To do this let’s first check if the board has been shaken.

1.​ Delete what’s already in the while loop

2.​ Inside the while True, check to see if the accelerometer has detected the shake
gesture​

3.​ If it has, scroll what’s currently in name

Hint: Using the Accelerometer

This is how you can test if the accelerometer (the inbuilt motion sensor) has detected a
certain gesture.

 if accelerometer.was_gesture("up"):
 display.scroll("Upwards!")

Task 2.2: What does our pet look like?

We now need to see what the pet actually looks like.​

1.​ First, under where we are displaying the name, and still inside the if we want to
display the image DIAMOND_SMALL​

2.​ Then we need to sleep for 1 second

Hint: How to sleep?

Remember our sleep function works in milliseconds and one second is 1000 milliseconds
so if we wanted to sleep for 5 seconds this is how we’d “sleep”

 display.scroll("Z")
 sleep(5000)
 display.scroll("Z")

| 6

Task 2.3: How hungry, bored, and sleepy is our pet?

You should now scroll the values of each of our remaining variables

1.​ Still inside the if statement, scroll the text “Hunger:” and then the contents of our
hunger variable then wait 50 milliseconds​

2.​ Scroll the text “Boredom:” and then the contents of our boredom variable then
wait 50 milliseconds​

3.​ Scroll the text “Sleepy:” and then the contents of our sleepiness variable then
wait 50 milliseconds

★ BONUS 2.4: Making your own photos!

We’re currently using an inbuilt image to represent our pet but that's a little boring

Create and display your own image for your Tamagotchi - ask us for paper grids to design
with, or use existing images from the micro:bit Image Cheat Sheet:
http://bit.ly/images-microbit​

You can program in your own images pixel by pixel like this:

 gpn_heart = Image("09090:33903:90009:03030:00900")
 display.show(gpn_heart)

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ When your Micro:Bit is shaken, it displays the name

☐ It then displays an image for your pet

☐ It then scrolls to show the hunger, boredom, and sleepiness

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE NOT TESTED YET

| 7

http://bit.ly/images-microbit

Imports go at the top
from microbit import *

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
while True:
 if accelerometer.was_gesture("shake"):
 display.scroll(name)
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)

| 8

Part 3: Interacting with our pet!
Task 3.1: Getting some Zzzs

We’re going to flip our Micro:Bit over to send our Tamagotchi to bed.

1.​ Inside the while loop, make an if statement that checks if the accelerometer
detects that the Micro:Bit is "face down"​

2.​ Inside the if statement, reduce the sleepiness variable by 3 and show a sleepy
face​

3.​ We also only want to show this face for a couple seconds, so after you display the
face, you'll need to use sleep, and then display.clear() to clear the screen

Task 3.2: Yummy yummy snacks!

We’re going to make a new button to feed our Tamagotchi.

1.​ Inside our while loop, add a new if statement that checks if button A was pressed.​

2.​ If A has been pressed, then decrease hunger by 3 and show a Happy face for a
little bit, don’t forget to clear the screen after!​

Hint: Detecting buttons

Here's a reminder on how to test if a button was pressed

 if button_a.was_pressed():
 display.scroll("AAA")

Task 3.3: Play time!

Now, we’re going to play some games with our Tamagotchi.

1.​ Inside our while loop (again), add a new if statement that checks if button B was
pressed.​

2.​ If B has been pressed, then decrease boredom by 3 and show a silly face for a
little bit, don’t forget to clear the screen after!

| 9

 CHECKPOINT

If you can tick all of these off, you can go to Part 4:
☐ If you turn the Micro:bit over, it decreases the Tamagotchi’s

sleepiness and shows a sleepy face
☐ If you press the Micro:Bit’s A button it decreases the

Tamagotchi’s hunger and shows a smiley face
☐ If you press the Micro:Bit’s B button it decreases Tamagotchi’s

boredom and shows a silly face.

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE NOT TESTED YET

Imports go at the top
from microbit import *

display.scroll("Welcome to Tamagotchi")
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
while True:
 if accelerometer.was_gesture("shake"):
 display.scroll(name)
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)
 if accelerometer.was_gesture("face down"):
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()
 if button_a.was_pressed():

| 10

 hunger-=3
 display.show(Image.HAPPY)
 sleep(1000)
 display.clear()
 if button_b.was_pressed():
 boredom-=3
 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

| 11

Part 4: Cleaning up the code!
Task 4.1: Our first function!

Let’s make our first function to clean up the display section of our code.

1.​ Make a function called show underneath where you're importing micro:bit​

2.​ Copy all of your code from under the if statement that checks whether the
micro:bit has been shaken into the show function​

3.​ Now where your old code used to be, call the function.

Hint: Making a function

Remember this is how you make a function.

 def my_function():
 # do some things here

Hint: Calling a function

Remember this is how you call a function to make it run.

 def my_function():
 # do some things here

 my_function()

| 12

Task 4.2: Sleeping, eating, and playing

Now we need to make a function to sleep

1.​ Make a function called sleeping and copy across all of your code for when the
microbit is face down. You will need to set sleepiness to global at the top of the
function​

2.​ Where your old code was, call the function.​

3.​ Now we need to repeat this process for when button_a and button_b are
pressed, for functions called eating and playing

Hint: Global variables

Here's how to make a variable global in a function

 def my_function():
 global my_variable

| 13

 CHECKPOINT

If you can tick all of these off, you can go to Part 5:
☐ Your program has some functions now

☐ Your program works the same as it did

☐ You tried it on your real-life micro:bit

TUTOR TIPS

The code should look like this:
Code not tested

Imports go at the top
from microbit import *

def show():
 display.scroll(name)
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)

def sleeping():
 global sleepiness
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()

def eating():
 global hunger
 hunger-=3
 display.show(Image.HAPPY)
 sleep(1000)
 display.clear()

def playing():
 global boredom
 boredom-=3

| 14

 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
while True:
 if accelerometer.was_gesture("shake"):
 show()
 if accelerometer.was_gesture("face down"):
 sleeping()
 if button_a.was_pressed():
 eating()
 if button_b.was_pressed():
 playing()

| 15

Part 5: Waiting and Dying

Task 5.1: Making a timer

Now we want to make a timer that starts a timer when we run the code, then resets every
time 10 seconds has passed as we will mark that as one pet “year”

1.​ Directly under the functions, before any other code, make a variable called start
and set it to the running time​

2.​ Inside the while loop check if the current running time is more than 10,000 greater
than start. If it is, reset start to the current running time.​

3.​ For now you might want to quickly display something to show that it’s working

Task 5.2: Updating some attributes

Now we actually want to update all of our values after a “year” has passed.

1.​ Firstly, in the section where you're setting all your variables make a new one called
dead this should start at False​

2.​ You will need to make a function called wait. Then inside the function, write an if
statement that checks whether dead is True. You should immediately return if it is,
you will also need to replicate this if statement in all of your functions except show
(this is so that the pet can’t change if it’s dead).​

3.​ Now you will need to increase every value by 1 (That’s hunger, boredom, and
sleepiness) remember to make them global​

4.​ You will now need another if statement that checks if hunger, boredom, or
sleepiness are above 10. If even one is, you will need to set the pet to dead.​

5.​ Then, in your while loop, above where you are updating start you should call the
wait function so that everything updates

| 16

 CHECKPOINT

If you can tick all of these off, you can go to Part 6:
☐ You now should have a timer that tracks a running time start

☐ It should also update all of the pet’s attributes every 10
seconds
☐ It should be able to die if any of the values exceed 10

TUTOR TIPS

The code should look like this:
Code not tested

Imports go at the top
from microbit import *

def show():
 display.scroll(name)
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)

def sleeping():
 global sleepiness
 if dead:
 return
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()

def eating():
 global hunger
 if dead:
 return
 hunger-=3
 display.show(Image.HAPPY)

| 17

 sleep(1000)
 display.clear()

def playing():
 global boredom
 if dead:
 return
 boredom-=3
 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

def wait():
 global sleepiness, hunger, boredom,dead
 if dead:
 return
 hunger +=1
 boredom+=1
 sleepiness+=1
 if hunger >10 or boredom>10 or sleepiness>10:
 dead = True

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
start = running_time()
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
dead = False
while True:
 if accelerometer.was_gesture("shake"):
 show()
 if accelerometer.was_gesture("face down"):
 sleeping()
 if button_a.was_pressed():
 eating()
 if button_b.was_pressed():
 playing()
 if running_time()-start >10000:
 wait()
 start = running_time()

| 18

Part 6: We're growing Up, up, up!
Task 6.1: How old is our pet?

We’re going to start storing the age of our pet so we can know how long we have kept it
alive for!

1.​ In the section where you create all the variables create a new variable called age
that starts at 0​

2.​ Inside your wait function, add one to age in the section you’re updating all the other
attributes

Task 6.2: What does our Tamagotchi look like?

We need to tell our code what our Tamagotchi should look like as it grows up!
Create four new variables to hold images for our Tamagotchi:

1.​ Create a baby_image class variable that holds Image.DIAMOND_SMALL​

2.​ Create a child_image class variable that holds Image.SNAKE​

3.​ Create a adult_image class variable that holds Image.BUTTERFLY​

4.​ Create a dead_image class variable that holds Image.GHOST​

Task 6.3: Let's draw our tamagotchi

We need to draw our Tamagotchi as it grows up. To do this, we’ll use a new function that
draws it based on its current age.

1.​ Create a new function called get_pic​

2.​ In this function, make an if statement that returns:
a.​ return dead_image if the Tamagotchi is dead
b.​ otherwise, if the Tamagotchi is alive and has age ≤ 3, return baby_image
c.​ otherwise, if the Tamagotchi is alive and has age ≤ 5, return

child_image
d.​ otherwise, return adult_image​

| 19

3.​ Then inside our show function, use this function to show the image get_pic
returns

 CHECKPOINT

If you can tick all of these off, you can go to Part 7:
☐ Your program has variables to store the baby, child, adult, and

spirit micro:bit images you want to display.
☐ Your program has a get_pic() function.

☐ Your program displays your chosen baby image when the pet
age is up to 3.
☐ Your program displays your chosen child image when the pet

age is greater than 3 and up to 5.
☐ Your program displays your chosen adult image when the pet

age is greater than 5.
☐ Your program displays your chosen spirit image when the pet

is dead.
☐ You tried it on your real-life micro:bit

TUTOR TIPS

The code should look like this:
Code not tested

Imports go at the top
from microbit import *

def show():
 display.scroll(name)
 display.show(get_pic())
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)

| 20

def sleeping():
 global sleepiness
 if dead:
 return
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()

def eating():
 global hunger
 if dead:
 return
 hunger-=3
 display.show(Image.HAPPY)
 sleep(1000)
 display.clear()

def playing():
 global boredom
 if dead:
 return
 boredom-=3
 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

def wait():
 global sleepiness, hunger, boredom,dead, age
 if dead:
 return
 hunger +=1
 boredom+=1
 sleepiness+=1
 age+=1
 if hunger >10 or boredom>10 or sleepiness>10:
 dead = True

def get_pic():
 if dead:
 return dead_image
 if age<=3:
 return baby_image
 if age <=5:
 return child_image
 return adult_image

Code in a 'while True:' loop repeats forever

| 21

display.scroll("Welcome to Tamagotchi")
dead_image = Image.GHOST
baby_image = Image.DIAMOND_SMALL
child_image = Image.SNAKE
adult_image = Image.BUTTERFLY

start = running_time()
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
age = 0
dead = False
while True:
 if accelerometer.was_gesture("shake"):
 show()
 if accelerometer.was_gesture("face down"):
 sleeping()
 if button_a.was_pressed():
 eating()
 if button_b.was_pressed():
 playing()
 if running_time()-start >10000:
 wait()
 start = running_time()

| 22

Extension 7: Talking Tamagotchi
Task 7.1: Feeling lonely

In this extension, we’re going to be teaching your pets to say hello to each other.

Your micro:bits have an in-built radio, which allows them to both send messages to
other micro:bits and receive messages from other micro:bits. Let’s try it out!

1.​ Add a new state variable called loneliness and set its initial value to be 0.

From now on, in order to keep your tamagotchi alive, you’ll need to manage its
hunger, boredom, sleepiness and loneliness levels.

Task 7.2: Updating loneliness

Just like with hunger, your pet will get lonely if no one talks to them, and eventually, they
can die from loneliness! Let’s update our code to maintain the loneliness state.

1.​ Inside the wait function, where you increment your hunger, boredom and
sleepiness levels, also increment loneliness.

2.​ Find where you’ve written an if statement setting your dead variable to true.
Extend the condition so that your pet will also die if its loneliness level exceeds
the threshold.

3.​ Finally, extend your show function to scroll hunger, boredom, sleepiness and
loneliness.

Hint: Global variables

Don’t forget to declare loneliness as global!

Task 7.3: Import radio

In order for your micro:bit to talk to other micro:bits, you’ll need to import and use
the radio module, just like you did with the microbit module.

1.​ At the top of your code, import radio.​

2.​ Ensure the radio is switched on by adding the line radio.on() right after the
code where you defined the start variable.

Hint: Importing radio

You can import the radio module by adding this line to the top of your code:

import radio

| 23

Task 7.4: Sending messages

Let’s add a function for sending messages to other micro:bits.
1.​ Define a new function named talk with no parameters.​

2.​ Inside the body of your function, you can use the radio.send(message)

method to broadcast a message to any nearby micro:bits. Send a message
introducing your pet, for example, “Hello, my name is ” + name.​

3.​ Add a line to display the message on your micro:bit, so that you can see what
message you’re sending out.

Make sure that your message ends with your pet’s name. This will let other pets know
who they should send their reply to!

Hint: Broadcasting messages

Here’s an example of how we could broadcast the message “Hello world!”

display.scroll("Hello world!")
radio.send("Hello world!")

Task 7.5: Calling your function

Next, you can program your pet to broadcast its message whenever you touch pin 0.
You can check if pin 0 has been touched by using the expression pin0.is_touched().

1.​ Add a new if statement to your game loop to check if pin 0 was touched - if it
was, call your function to say hello to other pets! This will cause some minor
issues so you should put a delay of 1 second before moving on so it doesn't
fire multiple times.​

2.​ Test it out: load up your code onto your micro:bit, then touch pin 0 - you
should see your message scrolling across the screen!

Hint: Micro:bit pins

| 24

Just like buttons A and B, your micro:bit also has several pins which you can use to
interact with your pet. For this challenge, we’ll be using pin 0, which is at the bottom
left of your micro:bit.

| 25

Task 7.6: Being social

Sending out messages to other micro:bits is great, but not very helpful when we don’t
know how to receive messages yet! Our next challenge is to receive messages coming
from other pets.
Let’s start by creating a function for processing a message that you received from
another pet.

1.​ Define a function called be_social, taking one parameter, message. That
parameter will be a string representing a message you’ve received.​

2.​ Remember that introduction messages end with a name - let’s split the
message into words and grab the last one, then we’ll be able to tell who sent
the message!
In Python, we can use the split method to separate a sentence into words,
then we can use list indexing to select the last word.​

3.​ In the body of your be_social function, create a variable called sender_name
and set it to the value of the last word in the message.

Hint: Splitting strings

Here’s an example of how we can split the message “I love GPN” into words, and
find the last word.

>>> message = "I love GPN"
>>> message.split()
[“I”, “love”, “GPN”]
>>> message.split()[-1]
“GPN”

Task 7.7: Right back at you

Now that we know who sent the message, we can display our response.
1.​ Add a new line to your function that will scroll the words “Hi ” + sender_name on

your micro:bit’s screen.

Hint: Displaying text

Use the display.scroll function to scroll words across your micro:bit’s screen.

Task 7.8: Receiving messages

| 26

As our game is running, we’ll need to regularly check our radio to see if anyone has sent
us a message. This is just like how we needed to check if certain buttons were pressed in
our while True statement. To check on our radio, we’ll use the radio.receive()
method.

1.​ Inside your while True statement, create a variable named message and set it to
the return value of radio.receive().

Task 7.9: Do you receive?

Let’s take a look at how the method radio.receive works!
When you call radio.receive, there are two possible situations:

(1)​Someone nearby has sent out a message. In this case, your micro:bit
receives the message and radio.receive returns a string containing that
message.

(2)​No messages have been sent. In this case, your micro:bit does not receive
any messages and radio.receive returns None.

None is a special value in Python which represents the absence of data - this is the
micro:bit’s way of telling us that there were no messages sent by anyone at all.

We only want to call our be_social function if we’ve actually received a message. That
means we need an if statement to determine if the value of message is None or not. To
check if the message is None, you’ll need to use special syntax in your if statement:

if message is not None:
 # your code goes here

1.​ If the message received by your pet is not None, call the be_social function
with message as your argument.

Hint: Displaying text

What’s the difference between is not and !=?
Because None is a special value representing an absence of data, we need to use
different syntax for comparisons. Don’t forget to use is or is not when checking for
None-ness, and == or != when checking for real values!

Task 7.10: Testing it out

You’re now ready to send and receive messages with other pets!

1.​ Check if a friend nearby has finished this section. If they have, load up your code
onto your micro:bits, hold them close together, and have one of you touch pin 0.
The other micro:bit should then scroll the message “Hi, <name>”

| 27

If you’re the first person to finish this section, ask a tutor to help you out with testing your
code.

 CHECKPOINT

If you can tick all of these off, you can go to Extension 8:
☐ You can send messages to other micro:bits by touching pin 0

☐ You can receive messages sent from other micro:bits

TUTOR TIPS

The code should look like this:
Code not tested

Imports go at the top
from microbit import *

def show():
 display.scroll(name)
 display.show(get_pic())
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)
 display.scroll("Loneliness: "+str(loneliness))
 sleep(50)

def sleeping():
 global sleepiness
 if dead:
 return
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()

def eating():
 global hunger
 if dead:
 return

| 28

 hunger-=3
 display.show(Image.HAPPY)
 sleep(1000)
 display.clear()

def playing():
 global boredom
 if dead:
 return
 boredom-=3
 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

def wait():
 global sleepiness, hunger, boredom,dead, age, loneliness
 if dead:
 return
 hunger +=1
 boredom+=1
 sleepiness+=1
 age+=1
 loneliness += 1
 if hunger >10 or boredom>10 or sleepiness>10 or loneliness>10:
 dead = True

def get_pic():
 if dead:
 return dead_image
 if age<=3:
 return baby_image
 if age <=5:
 return child_image
 return adult_image

def talk():
 message = "Hello, my name is " + name
 radio.send(message)
 display.scroll(message)

def be_social(message):
 sender_name = message.split()[-1]
 display.scroll("Hi " + sender_name)

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
dead_image = Image.GHOST

| 29

baby_image = Image.DIAMOND_SMALL
child_image = Image.SNAKE
adult_image = Image.BUTTERFLY

start = running_time()
radio.on()
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
age = 0
loneliness = 0
dead = False
while True:
 if accelerometer.was_gesture("shake"):
 show()
 if accelerometer.was_gesture("face down"):
 sleeping()
 if button_a.was_pressed():
 eating()
 if button_b.was_pressed():
 playing()
 if running_time()-start >10000:
 wait()
 start = running_time()
 if pin0.is_touched():
 talk()
 message = radio.receive()
 if message is not None:
 be_social(message)

| 30

Extension 8: Talking TO Tamagotchi
Task 8.1: Hearing noise

What if your pet has no other pets to talk to? It will die of loneliness! Wouldn’t it be
nice if you could talk to your pet and make it less lonely?

Micro:bits have in-built microphones which you can use to talk to your pet. After
completing this challenge, you’ll be able to talk to your pet and keep it happy, even
when there are no other pets nearby.

Let’s start by defining a function to call when the pet hears someone speaking into
the microphone.

1.​ Define a function named hear_noise. This function won’t need any
parameters.

2.​ In the body of your function, write some code to make the text ”Hello, human!”
scroll across the screen.

Task 8.2: Feeling less lonely

When the pet hears you talking to them, they should be less lonely!
1.​ Add another line to the hear_noise function to decrement (decrease by 1)

loneliness.

Hint: global variables

Don’t forget to declare loneliness as global!

Task 8.3: Talking to your pet

Now, we just need to call the hear_noise function whenever the microphone is spoken
into. To do that, we can use the microphone.current_event() method.

if microphone.current_event() == SoundEvent.LOUD:
 # call your function here

1.​ Add an if statement to your while True loop, underneath where you’re checking
the radio, to check if the microphone’s current event is SoundEvent.LOUD.​

2.​ Now, you can speak to your pet and make them less lonely! Try speaking into your
microbit’s microphone and check to see if it responds “Hello, human!”

| 31

 CHECKPOINT

If you can tick all of these off, you’re done!

When you talk to your micro:bit…
☐ Its loneliness decreases

☐ It displays a message in response

TUTOR TIPS

The code should look like this:
Code not tested

Imports go at the top
from microbit import *

def show():
 display.scroll(name)
 display.show(get_pic())
 sleep(1000)
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)
 display.scroll("Loneliness: "+str(loneliness))
 sleep(50)

def sleeping():
 global sleepiness
 if dead:
 return
 sleepiness-=3
 display.show(Image.ASLEEP)
 sleep(1000)
 display.clear()

def eating():
 global hunger
 if dead:

| 32

 return
 hunger-=3
 display.show(Image.HAPPY)
 sleep(1000)
 display.clear()

def playing():
 global boredom
 if dead:
 return
 boredom-=3
 display.show(Image.SILLY)
 sleep(1000)
 display.clear()

def wait():
 global sleepiness, hunger, boredom,dead, age, loneliness
 if dead:
 return
 hunger +=1
 boredom+=1
 sleepiness+=1
 age+=1
 loneliness += 1
 if hunger >10 or boredom>10 or sleepiness>10 or loneliness>10:
 dead = True

def get_pic():
 if dead:
 return dead_image
 if age<=3:
 return baby_image
 if age <=5:
 return child_image
 return adult_image

def talk():
 message = "Hello, my name is " + name
 radio.send(message)
 display.scroll(message)

def be_social(message):
 sender_name = message.split()[-1]
 display.scroll("Hi " + sender_name)

def hear_noise():
 display.scroll("Hello, human!")
 global loneliness

| 33

 loneliness -= 1

Code in a 'while True:' loop repeats forever
display.scroll("Welcome to Tamagotchi")
dead_image = Image.GHOST
baby_image = Image.DIAMOND_SMALL
child_image = Image.SNAKE
adult_image = Image.BUTTERFLY

start = running_time()
radio.on()
name = "Izy"
hunger = 0
boredom =0
sleepiness =0
age = 0
loneliness = 0
dead = False
while True:
 if accelerometer.was_gesture("shake"):
 show()
 if accelerometer.was_gesture("face down"):
 sleeping()
 if button_a.was_pressed():
 eating()
 if button_b.was_pressed():
 playing()
 if running_time()-start >10000:
 wait()
 start = running_time()
 if pin0.is_touched():
 talk()
 message = radio.receive()
 if message is not None:
 be_social(message)
 if microphone.current_event() == SoundEvent.LOUD:
 hear_noise()

| 34

	
	
	Girls’ Programming Network
	Tamagotchi with Micro:Bits!
	This project was created by GPN Australia for GPN sites all around Australia!
	
	Part 0: Setting up
	Task 0.1: micro:bits and pieces
	Task 0.2: Micro playground
	Hint: Cheat sheets
	CHECKPOINT

	Today’s Project Plan - Tamagotchi
	
	
	
	
	
	
	
	 Part 1: Welcome to Tamagotchi!
	Task 1.1: Name your file!
	Task 1.2: Welcome
	 CHECKPOINT

	
	
	Part 2: Seeing our pet! t with your
	Task 2.1: Shake it like a polaroid picture
	Hint: Using the Accelerometer
	Task 2.2: What does our pet look like?
	Hint: How to sleep?
	Task 2.3: How hungry, bored, and sleepy is our pet?
	★ BONUS 2.4: Making your own photos!
	CHECKPOINT

	
	Part 3: Interacting with our pet!
	Task 3.1: Getting some Zzzs
	Task 3.2: Yummy yummy snacks!
	Hint: Detecting buttons
	Task 3.3: Play time!
	 CHECKPOINT

	
	Part 4: Cleaning up the code!
	Task 4.1: Our first function!
	Hint: Making a function
	Hint: Calling a function
	Task 4.2: Sleeping, eating, and playing
	Hint: Global variables
	 CHECKPOINT

	Part 5: Waiting and Dying
	Task 5.1: Making a timer
	Task 5.2: Updating some attributes
	 CHECKPOINT

	Part 6: We're growing Up, up, up!
	Task 6.1: How old is our pet?
	Task 6.2: What does our Tamagotchi look like?
	Task 6.3: Let's draw our tamagotchi
	 CHECKPOINT

	
	Extension 7: Talking Tamagotchi
	Task 7.1: Feeling lonely
	Task 7.2: Updating loneliness
	Hint: Global variables
	Task 7.3: Import radio
	Hint: Importing radio
	Task 7.4: Sending messages
	Hint: Broadcasting messages
	Task 7.5: Calling your function
	Hint: Micro:bit pins
	Task 7.6: Being social
	Hint: Splitting strings
	Task 7.7: Right back at you
	Hint: Displaying text
	Task 7.8: Receiving messages
	Task 7.9: Do you receive?
	Hint: Displaying text
	Task 7.10: Testing it out
	 CHECKPOINT

	
	Extension 8: Talking TO Tamagotchi
	Task 8.1: Hearing noise
	Task 8.2: Feeling less lonely
	Hint: global variables
	Task 8.3: Talking to your pet
	 CHECKPOINT

	

