

Girls’ Programming Network

Tamagotchi with Micro:Bits!

Tutors Only

This project was created by GPN
Australia for GPN sites all around

Australia!

This workbook and related materials were created by tutors at:

Sydney, Melbourne and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Isabella Hogan
Alex Penna

Ashley Lamont

 | 1

Part 0: Setting up

Task 0.1: micro:bits and pieces

Let’s set up the micro:bit for programming today! You should have:

-​ 1 micro:bit chip
-​ 1 USB cable

1.​ Connect the small end of the USB cord to the middle port of the micro:bit
2.​ Connect the big end of the cord to your computer
3.​ Go to python.microbit.org

Task 0.2: Micro playground

First we’re going to play around with the displays on microbit.org and test them on
our micro:bits.

1.​ Make sure from microbit import * is at the top of your code.
2.​ Change the code under the while True: loop to display a duck and scroll your name

instead using display.show(Image.DUCK), sleep(1000) and
display.scroll("Your name")

3.​ Click the ‘Send to micro:bit’ button, then follow the steps on the screen.
4.​ Try this out with other words and pictures.

Hint

Don’t forget you have cheat sheets on the web page to help you code!
Remember to indent the code below the while loop!

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You are have connected your micro:bit to the computer

☐ You can display different pictures and words

 | 2

Today’s Project Plan -
Tamagotchi

We’re going to make a Tamagotchi electronic pet! ​
It will prompt the user to press A or B or the microbit logo

to interact with the pet! Keep your pet happy and alive.

Start off the pet by showing and giving it a name
and an image!

Show the pet’s name, sleepiness, boredom and
hunger.

Add the ability to play with, feed or send the pet
to sleep.

Making the code a bit better

Make the ability for the pet to die, but keep it alive!

Watch your pet grow up.

​

​
Once your base pet works add cool extensions!

 | 3

Part 1: Welcome to Tamagotchi!
Task 1.1: Name your file!

Now you’ve been introduced to your micro:bit, let’s start working on the project!

1.​ At the top of the page, edit your project name to be ‘tamagotchi’.

2.​ At the top of your code, use a comment to write your name

Task 1.2: Welcome

Let’s welcome our user and get things set up!

Before the while True: loop, add the following:

1.​ Use display.scroll to say “Welcome to Tamagotchi”​

2.​ Create some variables for our pet!
a.​ Name (set this to whatever you want!)
b.​ hunger, boredom and sleepiness should all be set to 0

CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Your Micro:bit scrolls the welcome message!

☐ You’ve tried it on your physical Micro:bit

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Task 1.2 Welcome
display.scroll("Welcome to Tamagotchi")
name = "Pet Name Here"
hunger = 0
boredom = 0

 | 4

sleepiness = 0

Task 0.2 Micro playground
while True:
 display.show(Image.DUCK)
 sleep (1000)
 display.scroll("Coder Name Here")

 | 5

Part 2: Seeing our pet!

Task 2.1: Shake it like a polaroid picture

We want to display all of the current details about our pet if the Micro:Bit has been shaken.
To do this let’s first check if the board has been shaken
.

1.​ Delete what’s already in the while loop

2.​ Inside the while True: loop, check to see if the accelerometer has detected the
shake gesture​

3.​ If it has, scroll what’s currently in name

Hint: Using the Accelerometer

This is how you can test if the accelerometer (the inbuilt motion sensor) has detected a
certain gesture.

 if accelerometer.was_gesture("up"):
 display.scroll("Upwards!")

Task 2.2: What does our pet look like?

We now need to see what the pet actually looks like.​

1.​ First, under where we are displaying the name, and still inside the if we want to
display the image DIAMOND_SMALL​

2.​ Then we need to sleep for 1 second

Hint: How to sleep?

Remember our sleep function works in milliseconds and one second is 1000 milliseconds
so if we wanted to sleep for 5 seconds this is how we’d “sleep”

 display.scroll("Z")
 sleep(5000)
 display.scroll("Z")

 | 6

Task 2.3: How hungry, bored, and sleepy is our pet?

You should now scroll the values of each of our remaining variables

1.​ Still inside the if statement, scroll the text “Hunger:” and then the contents of
our hunger variable then wait 50 milliseconds​

2.​ Scroll the text “Boredom:” and then the contents of our boredom variable then
wait 50 milliseconds​

3.​ Scroll the text “Sleepy:” and then the contents of our sleepiness variable
then wait 50 milliseconds

Hint: Changing variable data types

Remember our variables are numeric so to add them to text we must convert them to
strings using the built-in function that converts to string
 age = 15
 display.scroll(“Age is: ” + str(age))

★ BONUS 2.4: Making your own photos!

We’re currently using an inbuilt image to represent our pet but that's a little boring

Create and display your own image for your Tamagotchi - ask us for paper grids to design
with, or use existing images from the micro:bit Image Cheat Sheet:
http://bit.ly/images-microbit​

You can program in your own images pixel by pixel like this:

 gpn_heart = Image("09090:33903:90009:03030:00900")
 display.show(gpn_heart)

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ When your Micro:Bit is shaken, it displays the name

☐ It then displays an image for your pet

☐ It then scrolls to show the hunger, boredom, and sleepiness

 | 7

http://bit.ly/images-microbit

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Task 1.2 Welcome -> setting delay under 150 speeds up scroll
display.scroll("Welcome to Tamagotchi", delay=75)
name = "Pet Name"
hunger = 0
boredom = 0
sleepiness = 0

Task 2.1 Shake it like a polaroid picture
while True:
 if accelerometer.was_gesture("shake"):
 display.scroll(name)
 # Task 2.2 What does our pet look like
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll("Hunger: "+str(hunger))
 sleep(50)
 display.scroll("Boredom: "+str(boredom))
 sleep(50)
 display.scroll("Sleepiness: "+str(sleepiness))
 sleep(50)

 | 8

Part 3: Interacting with our pet!

Task 3.1: Getting some Zzzs

We’re going to flip our Micro:Bit over to send our Tamagotchi to bed.

1.​ Inside the while True: loop, make an if statement that checks if the
accelerometer detects that the Micro:Bit is "face down"​

2.​ Inside the if statement, reduce the sleepiness variable by 3 and show a
sleepy face​

3.​ We also only want to show this face for a couple seconds, so after you display the
face, you'll need to use sleep, and then display.clear() to clear the screen

Task 3.2: Yummy yummy snacks!

We’re going to make a new button to feed our Tamagotchi.

1.​ Inside our while loop, add a new if statement that checks if button A was
pressed.​

2.​ If A has been pressed, then decrease hunger by 3 and show a Happy face for a
little bit​

Hint: Detecting buttons

Here's a reminder on how to test if a button was pressed

 if button_a.was_pressed():
 display.scroll("AAA")

Task 3.3: Play time!

Now, we’re going to play some games with our Tamagotchi.

1.​ Inside our while loop (again), add a new if statement that checks if button B was
pressed.​

2.​ If B has been pressed, then decrease boredom by 3 and show a silly face for a
little bit

 | 9

CHECKPOINT

If you can tick all of these off you can go to Part 4:
☐ If you turn the Micro:bit over, it decreases the Tamagotchi’s

sleepiness and shows a sleepy face
☐ If you press the Micro:Bit’s A button it decreases the

Tamagotchi’s hunger and shows a smiley face
☐ If you press the Micro:Bit’s B button it decreases Tamagotchi’s

boredom and shows a silly face.

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=75)

name = "Pet Name"
hunger = 0
boredom = 0
sleepiness = 0

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 if accelerometer.was_gesture('shake'):
 display.scroll(name, delay=75)
 # Task 2.2 What does our pet look like
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(hunger), delay=75)
 sleep(50)
 display.scroll('Boredom: ' + str(boredom), delay=75)

 | 10

 sleep(50)
 display.scroll('Sleepy: ' + str(sleepiness), delay=75)
 sleep(50)

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 sleepiness = sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 hunger = hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()

 # Task 3.3 Play time!
 if button_b.was_pressed():
 boredom = boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 | 11

Part 4: Classes Rock!

Task 4.1: Getting things started

The first thing we’ll need to do is to make a class called Pet and make an initialising
function.

1.​ Make a class named Pet at the top of our code, underneath our imports​

2.​ Inside the class make a function called __init__ with a special ‘self’ parameter,
and a parameter for the pet’s name.​

3.​ Copy all the variables we set up in part 1 (name, hunger, boredom and
sleepiness) and paste it into the new __init__ function (leave the old ones
where they are as well for now)​

4.​ Update all of them to have self. in front e.g. hunger becomes self.hunger​

5.​ Update the name variable to use the name parameter instead

The next thing we’ll need to do is make an object of that class to use in our game.​

6.​ After where we display “Welcome to Tamagotchi”, make a new instance of the
Pet class called my_pet. While making the object, pass in the name that you want
your pet to have.

Hint: Making an __init__ method

A method is another name for a function that only works for a specific class. The
__init__ method is a special method that plans what the object is made up of when it is
created.

In this example we see a class named rectangle that requires width and length as
parameters for creation, and will store the width, length, and area as properties of the
object upon creation.

Note: the self parameter is internal to the class object and is how it refers to itself. It must
be included in the __init__ definition parameters, but does not need to be included
when creating objects of that class.

 class rectangle:
 # Making an __init__ method

 | 12

 def __init__(self, width, length):
 self.width = width
 self.length = length
 self.area = self.width * self.length

 # Making a new rectangle object named rect
 rect = rect angle(8,10)
 print("The area of the rectangle is", str(rect.area))

>>> The area of the rectangle is 80

Hint: What's in a name?

There are some special names for methods and __init__ is one of them. It has two
underscores on either side of the word init to show python it's a special method and that
it's being used to set up the class. You will need to remember this!

Hint: Making one version

With classes, they're basically like a template for code, setting up how it should act and
what variables it should store, but we still need to make versions or "instances" to use
them. This is how to make an instance of a class…

 # Here's how you make an instance…
 rect = rectangle(8,10)
 print("The area of the rectangle is", str(rect.area))

>>> The area of the rectangle is 80

Task 4.2: Making our first custom method

Now we’re going to start converting our current code into a bunch of methods for our
classes. To do that let’s start with one method so we can see how this needs to be done
.

1.​ Create a function in the class called display. This should include self as a
parameter when defining it, but should take in no parameters when calling it.​

2.​ You will then need to copy all your code that you’ve already written to display your
pet (anything after the if that tests to see if the Micro:Bit is shaken) into the
function. you will need to then adjust any use of the original variables to now be
referencing the class variables instead​

In order to make sure that the method actually runs, you should then call it inside the if
statement where you were previously displaying everything

 | 13

Hint: Making a custom method

A method is another name for a function that only works for a specific class.

In this example we see a perimeter function that returns the results of a perimeter
calculation.

Note how in both making the object and using its method we do not input a self parameter.

The self parameter is internal to the class object and is how it refers to itself. It must be
included in the method definition parameters, but is not included when using the method of
the class.

 class rectangle:
 # Making an __init__ method (should be the first method)
 def __init__(self, width, length):
 self.width = width
 self.length = length
 self.area = self.width * self.length

 # Making a custom method
 def perimeter(self):
 return (self.width + self.length) * 2

 # Making a rectangle object and using its perimeter method
 rect = rectangle(8,10)
 print("The perimeter is", str(rect.perimeter()))

>>> The perimeter is 36

Task 4.3: Again and Again and Again

You will now need to convert the rest of the functions so that everything is a method.

1.​ Following the process of the last step you will also need to make and convert the
code to use the following three methods:

a.​ sleep
b.​ feed
c.​ play

You can now also delete your old variables

 | 14

CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ You should now have a new pet class

☐ It should have a display method that shows all the necessary
information when the Micro:Bit has been shaken
☐ It should also feed, play, and sleep when the correct input is

made

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:
 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 display.show(Image.DIAMOND_SMALL)
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger), delay=75)
 sleep(50)
 display.scroll('Boredom: ' + str(self.boredom), delay=75)
 sleep(50)
 display.scroll('Sleepy: ' + str(self.sleepiness),
delay=75)
 sleep(50)

 | 15

 # Task 4.3 Again and Again and Again
 def sleep(self):
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=75)
my_pet = Pet("Pet Name")

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 if accelerometer.was_gesture('shake'):
 my_pet.display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 my_pet.sleep()

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 my_pet.feed()

 # Task 3.3 Play time!
 if button_b.was_pressed():
 my_pet.play()

 | 16

Part 5: Waiting and Dying

Task 5.1: Making a timer

Now we want to create a timer that starts when the code is run. It should reset every 10
seconds to mark the passing of one Tamagotchi 'year'.

1.​ Directly under the class, before any other code, make a variable called start and
set it to the running time​

2.​ Inside the while loop check if the current running time is more than 10,000
milliseconds greater than start. If it is, reset start to the current running time.​

3.​ For now you might want to quickly display something to show that it’s working

Hint: running time built-in function

The microbit library has a built-in running_time function you can use to see the number
of milliseconds since the micro:Bit was turned on

 moment_in_time = running_time()

Task 5.2: Updating some attributes

Now we actually want to update all of our values after a “year” has passed.

1.​ Firstly, you need to make a new attribute in our __init__ function called dead
this should start as False​

2.​ Secondly, make a method called wait.

3.​ Inside this method, write an if statement that checks whether self.dead is
True. If it is, exit out of the function with the return keyword.​

4.​ You will then need to replicate this if statement at the top of each of your methods
(except display). This will make it so that the pet's hunger/boredom/sleepiness
won't change after it's died.​

 | 17

5.​ Inside the wait method beyond the if check, you will need to increase every value
by 1 (That’s hunger, boredom, and sleepiness)​

6.​ You will now need another if statement that checks if hunger, boredom, or
sleepiness are above 10. If even one is, you will need to set the pet to dead.​

7.​ Then, in your while loop, above where you are updating start you should call
the wait function so that everything updates

Hint: Leaving a function with return statement

A function will end executing once it hits a return statement, regardless of what code is
left beneath it.

 class rectangle:
 # Making an __init__ method
 def __init__(self, width, length):
 self.width = width
 self.length = length
 self.area = self.width * self.length

 # Making a custom method
 def perimeter(self):
 # If width 0, exit using empty return statement
 if self.width == 0:
 return
 return (self.width + self.length) * 2

 # Making a rectangle object and using its perimeter method
 rect = rectangle(0,10)
 print("The perimeter is", str(rect.perimeter()))

>>> The perimeter is None

Task 5.3: Are you dead?

We are now making a function that will tell us if the pet is dead.
1.​ Make a new method called is_dead and return whether dead is True​

 | 18

2.​ You will then need to go through all of your other methods and then any time you
are checking whether dead is true you should use the method instead of the
property.

CHECKPOINT

If you can tick all of these off you can go to Part 6:
☐ You now should have a timer that tracks a start point in time

☐ You now should have a wait method that checks your start
point in time and updates it for each ‘year’ in your pets life
☐ It should also update all of the pet’s attributes every time it

updates the start variable, every 10 seconds
☐ The pet should be able to die if any of the pet’s attributes

values exceed 10

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:
 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0
 # Task 5.2.1 Updating some attributes
 self.dead = False

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 display.show(Image.DIAMOND_SMALL)

 | 19

 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger), delay=75)
 sleep(50)
 display.scroll('Boredom: ' + str(self.boredom), delay=75)
 sleep(50)
 display.scroll('Sleepy: ' + str(self.sleepiness),
delay=75)
 sleep(50)

 # Task 4.3 Again and Again and Again
 def sleep(self):
 if self.is_dead():
 return
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 if self.is_dead():
 return
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 if self.is_dead():
 return
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 # Task 5.2.2-5.2.5 Updating some attributes
 def wait(self):
 if self.is_dead():
 return
 self.hunger = self.hunger + 1
 self.boredom = self.boredom + 1
 self.sleepiness = self.sleepiness + 1
 if self.hunger > 10 or self.boredom > 10 or
self.sleepiness > 10:
 self.dead = True

 # Task 5.3 Are you dead

 | 20

 def is_dead(self):
 return self.dead

Task 5.1 Making a timer
start = running_time()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=10)
my_pet = Pet("Pet Name")

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 if accelerometer.was_gesture('shake'):
 my_pet.display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 my_pet.sleep()

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 my_pet.feed()

 # Task 3.3 Play time!
 if button_b.was_pressed():
 my_pet.play()

 # Task 5.1 Making a timer
 # Could also do -> if running_time() > (start + 10000):
 if running_time() - start > 10000:
 # Task 5.2.6 Updating some attributes
 my_pet.wait()
 start = running_time()
 #display.scroll('start: ' + str(start), delay=75)

 | 21

Part 6: We're growing up, up, up!

Task 6.1: How old is our pet?

We’re going to start storing the age of our pet so we can know how long we have kept it
alive for!

1.​ Inside your __init__ function, make a new attribute called age that starts at 0​

2.​ Inside your wait function, add one to age in the section you’re updating all the
other attributes

Task 6.2: What does our Tamagotchi look like?

We need to tell our code what our Tamagotchi should look like as it grows up!
In our class but before our __init__ method, create four new class variables to hold
images for our Tamagotchi:

1.​ Create a baby_image class variable that holds Image.DIAMOND_SMALL​

2.​ Create a child_image class variable that holds Image.SNAKE​

3.​ Create a adult_image class variable that holds Image.BUTTERFLY​

4.​ Create a dead_image class variable that holds Image.GHOST​

This will make them variables of the class itself that will never change between instances
of the class

 | 22

Task 6.3: Let's draw our tamagotchi

We need to draw our Tamagotchi as it grows up, to do this, we’ll use a new method that
draws it based on its current age.

1.​ Create a new method called get_pic in your class​

2.​ In this method, return:
a.​ dead_image if the Tamagotchi is dead
b.​ baby_image if the Tamagotchi is alive and has age ≤ 3
c.​ child_image if the Tamagotchi is alive and has age > 3 and age ≤ 5
d.​ adult_image otherwise​

3.​ Use this method to draw the current image for the Tamagotchi in our main draw

method

Hint: Using "Class Variables"

Class variables are ones that apply to a class itself and not a single instance. This means
it's slightly different when we want to use them. Instead of the normal self.variable for
a class variable you have to do name_of_class.variable

for example:

 class Rectangle:

 width = 5

 def __init__(self, length):
 self.length = length

 def area(self):
 return Rectangle.width * self.length

 | 23

CHECKPOINT

If you can tick all of these off you can go to Extension 7:
☐ You initialise four image class variables before your __init__

method
☐ You put an image into each of these, either a built-in image or

one you’ve designed.
☐ You have a get_pic method that returns an image based on the

Tamagotchi’s age and dead-ness
☐ You draw the result of the get_pic method in your display

method

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:

 # Task 6.2 What does our Tamagotchi look like
 baby_image = Image.DIAMOND_SMALL
 child_image = Image.SNAKE
 adult_image = Image.BUTTERFLY
 dead_image = Image.GHOST

 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0
 # Task 5.2.1 Updating some attributes
 self.dead = False
 # Task 6.1.1 How old is our pet

 | 24

 self.age = 0

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 # Task 6.3.3 Let's draw our tamagotchi
 display.show(self.get_pic())
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger), delay=75)
 sleep(50)
 display.scroll('Boredom: ' + str(self.boredom), delay=75)
 sleep(50)
 display.scroll('Sleepy: ' + str(self.sleepiness),
delay=75)
 sleep(50)

 # Task 4.3 Again and Again and Again
 def sleep(self):
 if self.is_dead():
 return
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 if self.is_dead():
 return
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 if self.is_dead():
 return
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 # Tasks 5.2.2-5.2.5 Updating some attributes
 def wait(self):
 if self.is_dead():
 return

 | 25

 self.hunger = self.hunger + 1
 self.boredom = self.boredom + 1
 self.sleepiness = self.sleepiness + 1
 # Task 6.1.2 How old is our pet
 self.age = self.age + 1
 if self.hunger > 10 or self.boredom > 10 or
self.sleepiness > 10:
 self.dead = True

 # Task 5.3 Are you dead
 def is_dead(self):
 return self.dead

 # Tasks 6.3.1 and 6.3.2 Let's draw our tamagotchi
 def get_pic(self):
 if self.is_dead():
 return Pet.dead_image
 if self.age <= 3:
 return Pet.baby_image
 if self.age <= 5:
 return Pet.child_image
 if self.age > 5:
 return Pet.adult_image

Task 5.1 Making a timer
start = running_time()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=10)
my_pet = Pet("Pet Name")

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 if accelerometer.was_gesture('shake'):
 my_pet.display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 my_pet.sleep()

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 my_pet.feed()

 | 26

 # Task 3.3 Play time!
 if button_b.was_pressed():
 my_pet.play()

 # Task 5.1 Making a timer
 # Could also do -> if running_time() > (start + 10000):
 if running_time() - start > 10000:
 # Task 5.2.6 Updating some attributes
 my_pet.wait()
 start = running_time()
 #display.scroll('start: ' + str(start), delay=75)

 | 27

Extension 7: Tamagotchi Friends!
We want our Tamagotchis to be able to talk to each other, and find friends! To do this, we’ll
use the radio to send and receive messages.

Task 7.1: Setting everything up

We're now going to set everything up.

1.​ At the top of your script, import the radio library, and add radio.on() below
the import​

2.​ In your while loop, add a new variable called radio_msg and set it to
radio.receieve()​

3.​ In our class __init__ method, initialise a new variable called loneliness and
set it to 0

4.​ Add our loneliness variable to the display and wait methods just like the
existing hunger/boredom/sleepiness variables

Task 7.2: Being social

Now that we’re storing the message we’re getting let’s actually work out what it says

1.​ Let’s make a new method called social. Outside of the self parameter, it should
take in one parameter msg.

2.​ Inside our social method, do the following:
a.​ Split the message by spaces, and then save the last item in the split

message as a variable called friend_name
b.​ Scroll "Hi" + friend_name + "!" on the display
c.​ Decrease loneliness by 5

3.​ Inside your main while True, make another if statement that checks to see if
radio_msg is not None. (This means we’ve received a message). If so, it should
call the social method using the non-empty radio_msg variable.​

 | 28

Task 7.3: Talking!

Now we need to teach our Tamagotchi’s to speak! Let’s add a way to talk.

1.​ In our while loop, check to see if pin0 is touched.​

2.​ If pin0 is touched, then we can use radio.send to send a greeting like "Hi,
I’m" + name to any nearby Tamagotchi’s. Remember to end your greeting with
your name so other Tamagotchis can read it!​

3.​ After sending a radio message, add a sleep for at least 1000 milliseconds, to
avoid sending too many greetings at once!

Hint: Talking with friends

For this extension to work your tamagotchi will need another one to talk to so in order to
test it on your physical one you'll need to wait till someone in the class has done this
extension. For now you can test it online by scrolling down to the radio message section.

When you are touching the pin 0 section of your microbit in reality, if it is not working make
sure you hold the microbit by the other side of the bottom gold bar to to complete the
touch circuit.

CHECKPOINT

If you can tick all of these off you can go to Extension 8:
☐ Your tamagotchi should now be able to send a message to

others if pin0 is touched
☐ It should also be able to receive messages from another

tamagotchi.

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

 | 29

Imports go at the top
from microbit import *
import radio

Task 7.1 Friends - Setting everything up
radio.on()

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:

 # Task 6.2 What does our Tamagotchi look like
 baby_image = Image.DIAMOND_SMALL
 child_image = Image.SNAKE
 adult_image = Image.BUTTERFLY
 dead_image = Image.GHOST

 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0
 # Task 5.2.1 Updating some attributes
 self.dead = False
 # Task 6.1.1 How old is our pet
 self.age = 0
 # Task 7.1.3 Friends - setting everything up
 self.loneliness = 0

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 # Task 6.3.3 Let's draw our tamagotchi
 display.show(self.get_pic())
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger))
 sleep(50)
 display.scroll('Boredom: ' + str(self.boredom))
 sleep(50)
 display.scroll('Sleepy: ' + str(self.sleepiness))
 sleep(50)
 display.scroll('Lonely: ' + str(self.loneliness))

 | 30

 sleep(50)

 # Task 4.3 Again and Again and Again
 def sleep(self):
 if self.is_dead():
 return
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 if self.is_dead():
 return
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 if self.is_dead():
 return
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 # Tasks 5.2.2-5.2.5 Updating some attributes
 def wait(self):
 if self.is_dead():
 return
 self.hunger = self.hunger + 1
 self.boredom = self.boredom + 1
 self.sleepiness = self.sleepiness + 1
 self.loneliness = self.loneliness + 1
 # Task 6.1.2 How old is our pet
 self.age = self.age + 1
 if self.hunger > 10 or self.boredom > 10 or
self.sleepiness > 10:
 self.dead = True

 # Task 5.3 Are you dead
 def is_dead(self):
 return self.dead

 # Tasks 6.3.1 and 6.3.2 Let's draw our tamagotchi
 def get_pic(self):

 | 31

 if self.is_dead():
 return Pet.dead_image
 if self.age <= 3:
 return Pet.baby_image
 if self.age <= 5:
 return Pet.child_image
 if self.age > 5:
 return Pet.adult_image

 # Task 7.2.1 and 7.2.2 Being Social
 def social(self, msg):
 msg_words = msg.split(" ")
 friend_name = msg_words[-1]
 display.scroll("Hello " + friend_name + "!", delay=75)
 self.loneliness = self.loneliness - 5

Task 5.1 Making a timer
start = running_time()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=10)
my_pet = Pet("Pet Name")

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 # Task 7.1.2 Friends - setting everything up
 radio_msg = radio.receive()
 # Task 7.2.3 Being social
 if radio_msg is not None:
 my_pet.social(radio_msg)

 # Task 7.3 Talking
 if pin0.is_touched():
 radio.send("Hi! I'm " + my_pet.name)
 sleep(1000)

 if accelerometer.was_gesture('shake'):
 my_pet.display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 my_pet.sleep()

 | 32

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 my_pet.feed()

 # Task 3.3 Play time!
 if button_b.was_pressed():
 my_pet.play()

 # Task 5.1 Making a timer
 # Could also do -> if running_time() > (start + 10000):
 if running_time() - start > 10000:
 # Task 5.2.6 Updating some attributes
 my_pet.wait()
 start = running_time()
 #display.scroll('start: ' + str(start), delay=75)

 | 33

Extension 8: Anti Social-Distancing
(Tamagotchi friends pt. 2)
You must have done Extension 7 to do this!
Our Tamagotchi’s can talk to each other, but they don’t really care if they’re actually together,
or really far apart! We want them to be able to chat together when they’re nearby and
hanging out.

To do this, we can measure the signal strength of the signal that our radio gets!

Here's a diagram that shows our range of radio strength compared to distance. (The
distances are not to scale but you could do some of your own testing to see what the actual
range is if you're interested)

If we check the signal strength of messages that we get, we can compare it to the strength of
a micro:bit that is kind of close to you. You can test this yourself and tweak the value, but we
find that -35dBm is a good number!

 | 34

Task 8.1: Changing our setup!

To start off we need to change how we’re taking in our messages!

1.​ Delete where you define the radio_msg variable, and replace it with a new
variable called msg_details. For msg_details, we’ll save the value of
radio.recieve_full() instead of radio.receieve(). This change will give
us the message, signal strength, and timestamp of the message all together in a
tuple! ​

2.​ You will also need to adjust the social method so that it takes in two parameters, a
message and the signal strength​

3.​ Adjust our if statement where we were checking if radio_msg isn’t None so
that it’s it’s checking msg_details​

4.​ If it isn’t None, make a new variable called decoded_msg and you will need to
make it equal to str(msg_details[0][3:], "utf8")

Task 8.2: Different levels of social

Now we need to do different things with different signal strengths so that our tamagotchis
are feeling more social the closer they are to the other tamagotchi.

1.​ Next, we can grab the signal strength as a second variable from
msg_details[1] and store this in a variable called strength. We can then
pass our decoded_message, along with the strength to social.​

2.​ In social, before showing the friend's name, or decreasing loneliness, we should
check if our signal strength is greater than -35 (or another number that works for
you). Remember, a higher number (closer to 0) means a stronger signal!​

3.​ If our message had a signal strength greater than our threshold, then we can greet
it as normal and decrease loneliness.​

4.​ If the signal was weaker than our threshold though, we should say "I can hear
" + friend_name and decrease the loneliness by 3 instead of 5 like we do if
we’re close together.

Now, when friends greet you, you should see a different message depending on if your
micro:bits are next to each other, or far apart!

 | 35

CHECKPOINT

If you can tick all of these off you can go to Extension 9:

☐ Your micro:bit should respond differently to nearby friends,

and further away friends

 | 36

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *
import radio

Task 7.1 Friends - Setting everything up
radio.on()

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:

 # Task 6.2 What does our Tamagotchi look like
 baby_image = Image.DIAMOND_SMALL
 child_image = Image.SNAKE
 adult_image = Image.BUTTERFLY
 dead_image = Image.GHOST

 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0
 # Task 5.2.1 Updating some attributes
 self.dead = False
 # Task 6.1.1 How old is our pet
 self.age = 0
 # Task 7.1.3 Friends - setting everything up
 self.loneliness = 0

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 # Task 6.3.3 Let's draw our tamagotchi
 display.show(self.get_pic())
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger), delay=75)
 sleep(50)

 | 37

 display.scroll('Boredom: ' + str(self.boredom), delay=75)
 sleep(50)
 display.scroll('Sleepy: ' + str(self.sleepiness),
delay=75)
 sleep(50)
 display.scroll('Lonely: ' + str(self.loneliness),
delay=75)
 sleep(50)

 # Task 4.3 Again and Again and Again
 def sleep(self):
 if self.is_dead():
 return
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 if self.is_dead():
 return
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 if self.is_dead():
 return
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 # Tasks 5.2.2-5.2.5 Updating some attributes
 def wait(self):
 if self.is_dead():
 return
 self.hunger = self.hunger + 1
 self.boredom = self.boredom + 1
 self.sleepiness = self.sleepiness + 1
 self.loneliness = self.loneliness + 1
 # Task 6.1.2 How old is our pet
 self.age = self.age + 1
 if self.hunger > 10 or self.boredom > 10 or
self.sleepiness > 10:
 self.dead = True

 | 38

 # Task 5.3 Are you dead
 def is_dead(self):
 return self.dead

 # Tasks 6.3.1 and 6.3.2 Let's draw our tamagotchi
 def get_pic(self):
 if self.is_dead():
 return Pet.dead_image
 if self.age <= 3:
 return Pet.baby_image
 if self.age <= 5:
 return Pet.child_image
 if self.age > 5:
 return Pet.adult_image

 # Task 7.2.1 and 7.2.2 Being Social,
 # Task 8.1 Changing our setup
 def social(self, msg, signal_strength):
 msg_words = msg.split(" ")
 friend_name = msg_words[-1]
 # Task 8.2.2 Checking signal strength
 if signal_strength >= -35:
 display.scroll("Hello " + friend_name + "!",
delay=75)
 self.loneliness = self.loneliness - 5
 if signal_strength < -35:
 display.scroll("I can hear " + friend_name, delay=75)
 self.loneliness = self.loneliness - 3

Task 5.1 Making a timer
start = running_time()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=10)
my_pet = Pet("Pet Name")

Part 2 Seeing our Pet
Task 2.1 Shake it like a polaroid picture
while True:
 # Task 8.1.3 Changing our setup - storing message details
 msg_details = radio.receive_full()
 if msg_details is not None:
 # Task 8.1.3 Extracting message content from details
 decoded_msg = str(msg_details[0][3:], "utf-8")

 | 39

 # Task 8.2.1 Different levels of social
 strength = msg_details[1]
 my_pet.social(decoded_msg, strength)

 # Task 7.3 Talking
 if pin0.is_touched():
 radio.send("Hi! I'm " + my_pet.name)
 sleep(1000)

 if accelerometer.was_gesture('shake'):
 my_pet.display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 my_pet.sleep()

 # Task 3.2 Yummy yummy snacks!
 if button_a.was_pressed():
 my_pet.feed()

 # Task 3.3 Play time!
 if button_b.was_pressed():
 my_pet.play()

 # Task 5.1 Making a timer
 # Could also do -> if running_time() > (start + 10000):
 if running_time() - start > 10000:
 # Task 5.2.6 Updating some attributes
 my_pet.wait()
 start = running_time()
 #display.scroll('start: ' + str(start), delay=75)

Extension 9: Many pets?
Right now you can only have one pet so let's rearrange some things so that you can have
many!

Task 9.1: Setting up

We can get more pets by creating new instances of our Pet class

 | 40

5.​ Firstly you need to make 2 or three pets with different names and add them to a list
called pets.​

6.​ Then, make a variable called current_pet and start it with the value 0 (this will
store the pet we’re currently looking at)​

Hint: Lists

Remember this is what a list looks like…

 my_favs = ["Chocolate", "Lollipops", "Skateboards", "Books"]

Task 9.2: Freeing up Button A and B

Now we need to free up button A and button B for cycling through our list of pets. We need
to change the if statements that currently use them.​

Let’s assign our feeding action to a new trigger instead of button A press. Let’s assign it to
pin1 touch, similar to our send a message section.

1.​ Where you’re currently checking if button A was pressed, change it so instead it’s
checking if pin1 is_touched.

2.​ Add a delay of 1 second before you feed the pet so that we don’t accidentally feed
it too much.

For reassigning our play action, let’s make the new trigger speaking to the pet! We can
check the current sound value of the microphone to see if someone is speaking to the pet.

3.​ First, make a variable that stores the current amount of sound the microphone can
hear so that we can use it as an input later. For this you’ll need to make a variable
called sound_level and in it, store microphone.sound_level()​

4.​ Then, instead of where it’s checking if button b is pressed, check if sound_level
is greater than 180. This should fire if you talk to the microbit.

a.​ You can mess around with the number here so that it requires different
levels of noise to play with the microbit

 | 41

Task 9.3: Scrolling through your pets

Now we want to make it so that we can access all of our pets to see, or interact with all of
them.

1.​ Inside your while loop, check for every time you’ve referenced pet1 in order to
interact with it, and instead use pet[current_pet] so that you’re only working
with the current pet​

2.​ Now, make an if statement that checks id button a was pressed. If it was, decrease
current_pet by 1 and then modulus it by the length of pets (this means you will
cycle left through your pets when you press button a)​

3.​ You will need to do the opposite if button b has been pressed. increase
current_pet by 1 and modulus it by the length of pets​

4.​ where you are currently making only the current pet wait, you should instead put a
for loop that goes through each pet in pets and runs each of their wait methods so
that they all update.

Hint: for loops

Remember this is what a for loop looks like…

 nums = [1,2,3,4]
 for num in nums:
 #do things

Hint: modulus function

Remember that a modulus is used to find the remainder when a number is divided by
another number…

 if 14%4 >0:
 print("Remainder =",14%4)

>> Remainder = 2

★ BONUS 9.4: Adding a new pet

Now we are making it so that you can add a new pet while the code is running.

 | 42

1.​ First, you’ll need to check if pin1 is_touched(). If it is, print “creating new
pet” and ask the user for an input (to get the name of the new pet)​

2.​ Then, you’ll need to make a new instance of Pet with the name the user has given
and add it to the list

Hint: when you're running your code on your micro:bit, you'll need to make sure you use
the send to microbit button and pair the computer with it so you can bring up the serial
(this is where any prints or inputs from your physical microbit will show up)

Hint: Serial window for input to micro:Bit

When the micro:Bit asks for user input, you will have to expand the serial window at the
bottom of your code in the python.microbit.org interface.

Click the Show serial ^ button to expand the serial window.

Expands to a window where you can give the micro:Bit your input

CHECKPOINT

If you can tick all of these off you're done:
☐ When you press A or B you can interact with different pets

☐ All interactions still work the same just under different inputs

 | 43

http://python.microbit.org

TUTOR TIPS

The code should look like this (with lines that are commented out):
CODE TESTED

Imports go at the top
from microbit import *
import radio

Task 7.1 Friends - Setting everything up
radio.on()

Part 4: Classes Rock
Task 4.1 Getting things started
class Pet:

 # Task 6.2 What does our Tamagotchi look like
 baby_image = Image.DIAMOND_SMALL
 child_image = Image.SNAKE
 adult_image = Image.BUTTERFLY
 dead_image = Image.GHOST

 def __init__(self, pet_name):
 self.name = pet_name
 self.hunger = 0
 self.boredom = 0
 self.sleepiness = 0
 # Task 5.2.1 Updating some attributes
 self.dead = False
 # Task 6.1.1 How old is our pet
 self.age = 0
 # Task 7.1.3 Friends - setting everything up
 self.loneliness = 0

 # Task 4.2 Making our first custom method
 def display(self):
 display.scroll(self.name, delay=75)
 # Task 2.2 What does our pet look like
 # Task 6.3.3 Let's draw our tamagotchi
 display.show(self.get_pic())
 sleep(1000)
 # Task 2.3 How hungry, bored, and sleepy is our pet
 display.scroll('Hunger: ' + str(self.hunger), delay=75)
 sleep(50)
 display.scroll('Boredom: ' + str(self.boredom), delay=75)
 sleep(50)

 | 44

 display.scroll('Sleepy: ' + str(self.sleepiness),
delay=75)
 sleep(50)
 display.scroll('Lonely: ' + str(self.loneliness),
delay=75)
 sleep(50)

 # Task 4.3 Again and Again and Again
 def sleep(self):
 if self.is_dead():
 return
 self.sleepiness = self.sleepiness - 3
 display.show(Image.ASLEEP)
 sleep(500)
 display.clear()
 def feed(self):
 if self.is_dead():
 return
 self.hunger = self.hunger - 3
 display.show(Image.HAPPY)
 sleep(500)
 display.clear()
 def play(self):
 if self.is_dead():
 return
 self.boredom = self.boredom - 3
 display.show(Image.SILLY)
 sleep(500)
 display.clear()

 # Tasks 5.2.2-5.2.5 Updating some attributes
 def wait(self):
 if self.is_dead():
 return
 self.hunger = self.hunger + 1
 self.boredom = self.boredom + 1
 self.sleepiness = self.sleepiness + 1
 self.loneliness = self.loneliness + 1
 # Task 6.1.2 How old is our pet
 self.age = self.age + 1
 if self.hunger > 10 or self.boredom > 10 or
self.sleepiness > 10 or self.loneliness > 10:
 self.dead = True

 # Task 5.3 Are you dead

 | 45

 def is_dead(self):
 return self.dead

 # Tasks 6.3.1 and 6.3.2 Let's draw our tamagotchi
 def get_pic(self):
 if self.is_dead():
 return Pet.dead_image
 if self.age <= 3:
 return Pet.baby_image
 if self.age <= 5:
 return Pet.child_image
 if self.age > 5:
 return Pet.adult_image

 # Task 7.2.1 and 7.2.2 Being Social, Task 8.1 Changing our
setup
 def social(self, msg, signal_strength):
 msg_words = msg.split(" ")
 friend_name = msg_words[-1]
 # Task 8.2.2 Different levels of social - checking
strength
 if signal_strength >= -35:
 display.scroll("Hello " + friend_name + "!",
delay=75)
 self.loneliness = self.loneliness - 5
 if signal_strength < -35:
 display.scroll("I can hear " + friend_name, delay=75)
 self.loneliness = self.loneliness - 3

Task 5.1 Making a timer
start = running_time()

Task 1.2 Welcome
display.scroll('Welcome to Tamagotchi', delay=10)
#my_pet = Pet("Pet Name")

Task 9.1 Setting up new multiple pets variables
pet1 = Pet("pet name1")
pet2 = Pet("pet name2")
pet3 = Pet("pet name3")
pets = [pet1, pet2, pet3]
current_pet = 0

Part 2 Seeing our Pet

 | 46

Task 2.1 Shake it like a polaroid picture
while True:

 # Bonus 9.5 Adding a new pet
 if pin2.is_touched():
 display.scroll("Creating new Pet", delay=75)
 new_name = input("Name your new Pet: ")
 temp = Pet(new_name)
 pets.append(temp)
 display.scroll(new_name + " has moved into the pet
house", delay=75)

 # Task 9.3 Scrolling through multiple pets
 if button_a.was_pressed():
 current_pet = (current_pet - 1) % len(pets)
 if button_b.was_pressed():
 current_pet = (current_pet +1) % len(pets)

 # Task 8.1.3 Changing our setup - storing message details
 msg_details = radio.receive_full()
 # Task 7.2.3 Being social
 if msg_details is not None:
 # Task 8.1.3 Changing our setup - extracting message
content from details
 decoded_msg = str(msg_details[0][3:], "utf-8")
 # Task 8.2.1 Different levels of social
 strength = msg_details[1]
 pets[current_pet].social(decoded_msg, strength)

 # Task 7.3 Talking
 if pin0.is_touched():
 radio.send("Hi! I'm " + my_pet.name)
 sleep(1000)

 if accelerometer.was_gesture('shake'):
 pets[current_pet].display()

 # Part 3 Interacting with our Pet
 # Task 3.1 Getting some Zzzs
 if accelerometer.was_gesture('face down'):
 pets[current_pet].sleep()

 # Task 3.2 Yummy yummy snacks!
 # Task 9.2 Freeing up buttons A and B
 if pin1.is_touched():

 | 47

 pets[current_pet].feed()
 sleep(1000)

 # Task 3.3 Play time!
 # Task 9.2 Freeing up buttons A and B
 sound_level = microphone.sound_level()
 if sound_level > 180:
 pets[current_pet].play()

 # Task 5.1 Making a timer
 # Could also do -> if running_time() > (start + 10000):
 if running_time() - start > 10000:
 # Task 5.2.6 Updating some attributes
 # Task 9.4 Making time pass for all the pets
 for pet_x in pets:
 pet_x.wait()
 #pets[current_pet].wait()
 start = running_time()
 #display.scroll('start: ' + str(start), delay=75)

 | 48

	
	
	Girls’ Programming Network
	Tamagotchi with Micro:Bits!
	This project was created by GPN Australia for GPN sites all around Australia!
	
	Part 0: Setting up
	Task 0.1: micro:bits and pieces
	Task 0.2: Micro playground
	Hint
	CHECKPOINT

	Today’s Project Plan - Tamagotchi
	
	
	
	
	
	
	
	Part 1: Welcome to Tamagotchi!
	Task 1.1: Name your file!
	Task 1.2: Welcome
	CHECKPOINT

	Part 2: Seeing our pet!
	Task 2.1: Shake it like a polaroid picture
	Hint: Using the Accelerometer
	Task 2.2: What does our pet look like?
	Hint: How to sleep?
	Task 2.3: How hungry, bored, and sleepy is our pet?
	Hint: Changing variable data types
	★ BONUS 2.4: Making your own photos!
	CHECKPOINT

	Part 3: Interacting with our pet!
	Task 3.1: Getting some Zzzs
	Task 3.2: Yummy yummy snacks!
	Hint: Detecting buttons
	Task 3.3: Play time!
	CHECKPOINT

	
	Part 4: Classes Rock!
	Task 4.1: Getting things started
	Hint: Making an __init__ method
	Hint: What's in a name?
	Hint: Making one version
	Task 4.2: Making our first custom method
	Hint: Making a custom method
	Task 4.3: Again and Again and Again
	CHECKPOINT

	
	Part 5: Waiting and Dying
	Task 5.1: Making a timer
	Hint: running time built-in function
	Task 5.2: Updating some attributes
	Hint: Leaving a function with return statement
	Task 5.3: Are you dead?
	CHECKPOINT

	Part 6: We're growing up, up, up!
	Task 6.1: How old is our pet?
	Task 6.2: What does our Tamagotchi look like?
	Task 6.3: Let's draw our tamagotchi
	Hint: Using "Class Variables"
	CHECKPOINT

	
	Extension 7: Tamagotchi Friends!
	Task 7.1: Setting everything up
	Task 7.2: Being social
	Task 7.3: Talking!
	Hint: Talking with friends
	CHECKPOINT

	
	Extension 8: Anti Social-Distancing (Tamagotchi friends pt. 2)
	Task 8.1: Changing our setup!
	Task 8.2: Different levels of social
	CHECKPOINT

	Extension 9: Many pets?
	Task 9.1: Setting up
	Hint: Lists
	Task 9.2: Freeing up Button A and B
	Task 9.3: Scrolling through your pets
	Hint: for loops
	Hint: modulus function
	★ BONUS 9.4: Adding a new pet
	Hint: Serial window for input to micro:Bit
	CHECKPOINT

