
Welcome to the Labs!

Secret Diary Chatbot!

Thank you to our Sponsors!

Platinum Sponsor:

Who are the tutors?

Who are you?

Two Truths and a Lie

1. Get in a group of 3-5
people

2. Tell them three things
about yourself:
a. Two of these things

should be true
b. One of these things

should be a lie!
3. The other group members

have to guess which is the
lie

Log on

Log on and jump on the GPN website

girlsprogramming.network/workshop

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Introduction to Edstem

Signing up to Edstem

We are shifting all our courses to a new website called “Edstem” so here’s an
overview of how to sign up and how to use it.

First let’s go through how to create an account.

1. Follow this join link: https://edstem.org/au/join/4KxYP6
2. Put in your name and your personal email address
3. Click Create Account
4. Go to your email to verify your account
5. Create a password
6. It should then take you to the courses home page. Click on the one we will

be using for this project; Chatbot N

If you don’t have access to your email account, ask a tutor for a GPN edStem login

https://edstem.org/au/join/4KxYP6

Getting to the lessons

Once you are in the course, you’ll be taken to a discussion page.

Click the button for the lessons page (top right - looks like a book)

The Anatomy of the workbook

The main page:

● Heading at the top that tells you the project (ChatbotN)

● List of “Chapters” - they have icons that looks like this:

● To complete your project, work through the chapters one at a time

Inside a Chapter

Inside a chapter there are two main types of
pages:

1. Lessons - where you will do your coding.

They have this icon:

2. Checkpoints

Each chapter has a checkpoint to complete to
move to the next chapter. Make sure you
scroll down to see all the questions in a
checkpoint.

How to do the work

In each lesson there is:

● A section on left with instructions
● A section on right for your code

You will need to copy your code from the last lesson, then follow the
instructions to change your code

There are also
Hints and
Code Blocks to
help you

Running your code…

1. Open the Terminal window below your code

2. Click button that says “Click here to activate the terminal”.

3. Your code should run automatically.

4. Click the button again to rerun your code.

5. You can resize the Terminal window. Don’t worry if you
forget. Tutors

will help!

Some shortcuts…

There are a couple things you can do to make copying your code from one
page to another easier.

1) Ctrl + A

2) Ctrl + C

3) Ctrl + V

Pressing these keys together will select all the text on a page

Pressing these keys together will copy anything that’s selected

Pressing these keys together will paste anything you’ve copied

Need help with EdStem?

There is a section at the top of your workbook that explains how to use
EdStem if you get stuck and need a reminder!

It’s called 0: Intro to EdStem

Go to Part 0 and have a look!

Files, Dictionaries, & Functions

Opening files!

To get access to the stuff inside a file in python we need to open it!

That doesn’t mean clicking on the little icon!

f = open("test.txt")

You’ll now be able to read the things in f

If your file is in the same location as your code you can just use the name!

A missing file causes an error

Here we try to open a file that doesn't exist:

f = open('missing.txt')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or
directory: 'missing.txt'

You can read a whole file into a string

>>> f = open('haiku.txt')
>>> my_string = f.read()

>>> print(my_stirng)
Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

haiku.txt

Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

You can also read in one line at a time

You can use a for loop to only get 1 line at a time!

f = open('haiku.txt')
for line in f:
 print(line)

Wanna go outside.

Oh NO! Help! I got outside!

Let me back inside!

Why is there an extra blank line each time?

Chomping off the newline

The newline character is represented by '\n':

print('Hello\nWorld')
Hello
World

We can remove it from the lines we read with .strip()

x = 'abc\n'
x.strip()
'abc'

x.strip() is safe as lines without newlines will be unaffected

Reading and stripping!

for line in open('haiku.txt'):
 line = line.strip()
 print(line)

Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

No extra lines!

Using with!

This is a special trick for opening files!

with open("words.txt") as f:
 for line in f:

 print(line.strip())

It automatically closes your file for you!
It’s good when you are writing files in python!

Write to files!

You can also write to files!

f = open("newfile.txt", "w")
f.write("This is my new text!")

Notice we used "w" instead of "r"? We opened it in
write mode!

This will create a new file if it doesn’t exist, and overwrite
the file if it already exists

Dictionaries!

Look up
Hello

Get back
A greeting (salutation) said
when meeting someone or
acknowledging someone’s
arrival or presence.

You know dictionaries!
They’re great at looking up a thing
by a word, not a position in a list!

Looking it up!

There are lots of
times we want to
look something up!

Phone Book Vending Machine

Competition
registration

Name → Phone number Treat Name → Price

Team Name → List of team members

Looking it up!

Phone Book

Name → Phone number
Key Value

We can use a dictionary for anything with a
key → value pattern!

Dictionaries anatomy!

This is a python dictionary!

This dictionary has Alex, Caitlin and Emma’s phone numbers

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

Stored in the
variable

phone_book

Has squiggly
brackets

Made up of
pairs of

information

Each pair is
made up of a
key and value

The pairs are
separated by

commas

Keys and values are
separated by a colon

Playing with dictionaries!

Let’s look at an example!

1. What happens?

2. How would you look up Emma’s phone number?

3. Look up the name of someone who is not in the phone book? What
happens?

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

phone_book[“Alex"]

Playing with dictionaries!

Let’s look at an example!

1. What happens?

2. How would you look up Emma’s phone number?

3. Look up the name of someone who is not in the phone book? What
happens?

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

phone_book[“Alex"] 111

Playing with dictionaries!

Let’s look at an example!

1. What happens?

2. How would you look up Emma’s phone number?

3. Look up the name of someone who is not in the phone book? What
happens?

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

phone_book[“Alex"] 111

phone_book[“Emma"]

Playing with dictionaries!

Let’s look at an example!

1. What happens?

2. How would you look up Emma’s phone number?

3. Look up the name of someone who is not in the phone book? What
happens?

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

phone_book[“Alex"] 111

KeyError

phone_book[“Emma"]

Is it in the dictionary?

What if we want to check whether a name is already in our contacts so we
don’t add it again? for that we’ll need to check if the name is in the
dictionary.Take this example…

What happens if we say;

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}

>>> if “Jane” in contacts:
... print(“Hi Jane!”)
... else:
... print(“I don’t know you :(“)

Is it in the dictionary?

What if we want to check whether a name is already in our contacts so we
don’t add it again? for that we’ll need to check if the name is in the
dictionary.Take this example…

What happens if we say;

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}

>>> if “Jane” in contacts:
... print(“Hi Jane!”)
... else:
... print(“I don’t know you :(“)
Hi Jane!

Since Jane is a key
in contacts it’ll print

Hi Jane!

Is it in the dictionary?

What if we want to check whether a name is already in our contacts so we
don’t add it again? for that we’ll need to check if the name is in the
dictionary.Take this example…

But what happens if we change the name?

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}

>>> if “Renee” in contacts:
... print(“Hi Renee!”)
... else:
... print(“I don’t know you :(“)

Is it in the dictionary?

What if we want to check whether a name is already in our contacts so we
don’t add it again? for that we’ll need to check if the name is in the
dictionary.Take this example…

But what happens if we change the name?

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}

>>> if “Renee” in contacts:
... print(“Hi Renee!”)
... else:
... print(“I don’t know you :(“)
I don’t know you :(

Since there is no
“Renee” key in

the dictionary it’ll
print the second

option

Looping through a dictionary

Now what if we want to look at every element in the dictionary one by one?

Looping through a dictionary

Now what if we want to look at every element in the dictionary one by one?

For loops!

Looping through a dictionary

Now what if we want to look at every element in the dictionary one by one?

Using for loops we can go through each key of the dictionary one by one.

For loops!

Looping through a dictionary

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}
for i in contacts:
 print(i)

What’s going to happen?

Looping through a dictionary

contacts = {“John”: 11, “Jane”: 22, ”Jack”: 33}
for i in contacts:
 print(i)

What’s going to happen?
>>> John
>>> Jane
>>> Jack

● Each key in the dictionary
takes a turn at being the
variable i

● Do the body once for each
item

● We’re done when we run out
of items!

How functions fit together!

Functions are like factories!

Running a factory doesn’t mean doing all the work
yourself, you can get other factories to help you out!

Your main factory!

Timber Mill

Metal Worker

Cupcake factory

How functions fit together!

Functions are like factories!

Asking other factories to do some work for you makes
your main task simper. You can focus on the
assembly!

Your main factory!I’d like to place an
order for a piece
of wood. 2 meters
by 1.5 meters.

Sure thing!
Coming
right away!

Order

Delivery

Order

Delivery

Can I order 4
metal poles
please! 80cm
long.

Timber Mill

Cupcake factory

Metal Worker

It will be
delivered
straight
away!

How functions fit together!

Functions are like factories!
Your main factory!

Timber Mill

Metal Worker

Cupcake factory

Look at this beautiful
table I made!

Outsourcing made it
simple!

How functions fit together!

You can write a bunch of

helpful functions to

simplify your main goal!

Your main code!
Helps with printing

nicely

Does
calculationsUses stats

to make
decisions

You can write these

once and then use

them lots of times!

They can be

anything you like!

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Try these:

>>> len("Hello world")
11

Defining your own functions

Built in functions are great! But sometimes we want
custom functions!

Defining our own functions means:

● We cut down on repeated code

● Nice function names makes our code clear and easy to read

● We can move bulky code out of the way

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

When using a function in a script make
sure you define the function first.

It doesn’t matter if you call it from inside
another function though!

Functions often need extra information

Functions are more useful if we can change what they do
We can do this by giving them arguments (aka parameters)

Here, we give the hello() function a name

Any string will work

>>> def hello(person):
... print('Hello, ' + person + ', how are you?')
>>> hello('Alex')
Hello, Alex, how are you?

>>> hello('abcd')
Hello, abcd, how are you?

Functions can take multiple arguments

Often we want to work with multiple pieces of information.

You can actually have as many parameters as you like!

This function takes two numbers, adds them together and prints
the result.

>>> def add(x, y):
... print(x + y)
>>> add(3, 4)
7

Arguments stay inside the function

The arguments are not able to be accessed outside of the function
declaration.

>>> def hello(person):
... print('Hello, ' + person + '!')
>>> print(person)
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
NameError: name 'person' is not defined

Variables stay inside the function

Neither are variables made inside the function. They are local variables.

>>> def add(x, y):
... z = x + y
... print(z)
>>> add(3, 4)
7
>>> z
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined

Global variables are not affected

Changing a variable in a function only changes it inside the function.

>>> z = 1
>>> def add(x, y):
... z = x + y
... print(z)
>>> add(3, 4)
7

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
... z = x + y
... print(z)
>>> add(3, 4)
7

>>> print(z)

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):
... z = x + y
... print(z)
>>> add(3, 4)
7

>>> print(z)
1

More on global variables

But what if we want to be able
to change a variable that is
made outside a function INSIDE
the function?

For that we need to declare the
variable as global

Let’s take our old code and see
how it will change if we make z
global…

More on global variables

But what if we want to be able
to change a variable that is
made outside a function INSIDE
the function?

For that we need to declare the
variable as global

Let’s take our old code and see
how it will change if we make z
global…

>>> z = 1
>>> def add(x, y):
... global z
... z = x + y
... print(z)
>>> add(3, 4)
7

What should this print now?

>>> print(z)

More on global variables

But what if we want to be able
to change a variable that is
made outside a function INSIDE
the function?

For that we need to declare the
variable as global

Let’s take our old code and see
how it will change if we make z
global…

>>> z = 1
>>> def add(x, y):
... global z
... z = x + y
... print(z)
>>> add(3, 4)
7

What should this print now?

>>> print(z)
7

Giving something back

At the moment our function just does a thing, but it‘s not able to give
anything back to the main program.

Currently, we can’t use the result of add()

sum has no value!

>>> def add(x, y):
... print(x + y)
>>> sum = add(1, 3)
4
>>> sum

Giving something back

Using return in a function immediately returns a
result.

>>> def add(x, y):
... z = x + y
... return z
...
>>> sum = add(1, 3)
>>> sum
4

Giving something back

When a function returns something, the control is passed back to the
main program, so no code after the return statement is run.

Here, the print statement after the return never gets run.

>>> def add(x, y):
... print('before the return')
... z = x + y
... return z
... print('after the return')
>>> sum = add(1, 3)
before the return
>>> sum
4

Recap: Function Anatomy

def add(x, y):

>>> add(2, 3)

the def keyword function name
function arguments

function name function arguments

definition

callsite

Project time!

You now know all about files, dictionaries,
and functions!

Let’s put what we learnt into our project
Try to do Part 1 - 5

 The tutors will be around to help!

Regex

What is Regex?

Regex or “Regular Expression” is a way of searching text for parts
that match a certain “pattern”

Like how an email will fit the pattern text@gmail.com

Or a phone number will fit the pattern (+area code) 8 numbers

How does this work?

Let’s do a simulated version of this to see how it works.

Let’s say we want to find a pattern of beads that goes red, orange, 3 beads,
then purple.

Let’s work through how the computer would search a whole bracelet.

? ? ?

How does this work?

First the computer will go through the bracelet to see if any match the first
element in the pattern (a red) bead

? ? ?

How does this work?

First the computer will go through the bracelet to see if any match the first
element in the pattern (a red) bead

? ? ?

How does this work?

Then it will go through and check if the next bead along also matches (is
orange), and rule out the ones that don’t

? ? ?

How does this work?

Next in the pattern it will accept any three beads, so it’ll automatically go
ahead three beads.

? ? ?

How does this work?

The pattern then says the last bead must be purple, so it goes through and
checks if the last bead is purple and if it isn’t it is ruled out

? ? ?

The result…

From searching our bracelet we have found two sections that match our
pattern…

The pattern:

Match 1:

Match 2:

? ? ?

Beads to text

Let’s write our bead pattern in regex, assuming that red is “r”, orange is “o”,
and purple is “p”.

“ro…p”

Here the main building blocks are:

- The letters (they mean that exact letter has to be present)
- And the full stops. They are a placeholder for any character.

How to make a regex “pattern”

The main idea of regex is to search a string for sections that fit a certain
“pattern”. The main building blocks of a pattern are;

| means “or” e.g. (a|b) means a or b

\d represents any number e.g. pass\d will accept pass1, pass2 etc.

() groups items together

^ represents the beginning of a line

$ represents the end of a line

\b represents the start or end of a “word”

a{1,5} means there must be between 1 and 5 of the letter a

a+ represents one or more of the letter a

Match these patterns to the word examples
>>> d
6
>>> ^g
-5
>>> ^.l+
16
>>> ^(b|a)+
4

abbreviate

Some examples

data

coding

gpn

green

algorithm

illogical

bash

Match these patterns to the word examples
>>> d
6
>>> ^g
-5
>>> ^.l+
16
>>> ^(b|a)+
4

abbreviate

Some examples

data coding

gpn

green

algorithm

illogical

bash

Match these patterns to the word examples
>>> d
6
>>> ^g
-5
>>> ^.l+
16
>>> ^(b|a)+
4

abbreviate

Some examples

data coding

gpngreen

algorithm

illogical

bash

Match these patterns to the word examples
>>> d
6
>>> ^g
-5
>>> ^.l+
16
>>> ^(b|a)+
4

abbreviate

Some examples

data coding

gpngreen

algorithm illogical

bash

Match these patterns to the word examples
>>> d
6
>>> ^g
-5
>>> ^.l+
16
>>> ^(b|a)+
4 abbreviate

Some examples

data coding

gpngreen

algorithm illogical

bash

How to actually use regex

There are two main functions we will be using.

1. re.search(r”pattern”, string_to_search)

How to actually use regex

There are two main functions we will be using.

1. re.search(r”pattern”, string_to_search)

This will return none if the pattern is not found and a
class if it is.

How to actually use regex

There are two main functions we will be using.

1. re.search(r”pattern”, string_to_search)

This will return none if the pattern is not found and a
class if it is.

there must be an “r”
before the pattern

string to ensure python
registers the regex
pattern correctly

How to actually use regex

There are two main functions we will be using.

1. re.search(r”pattern”, string_to_search)

2. re.findall(r”pattern”, string_to_search)

This will return none if the pattern is not found and a
class if it is.

How to actually use regex

There are two main functions we will be using.

1. re.search(r”pattern”, string_to_search)

2. re.findall(r”pattern”, string_to_search)

This will return none if the pattern is not found and a
class if it is.

This will return a list of all the matches to the pattern

A useful website

If you want to learn more regex building blocks or test your regex
expressions in a way that will explain the outcome… We suggest looking at

https://regex101.com/

https://regex101.com/

Project time!

You now know all about Regex!

Let’s put what we learned into our
project

Try to do the Extensions!

 The tutors will be around to help!

