
‭Girls’ Programming Network‬

‭Scissors Paper Rock!‬

‭TUTORS ONLY‬

‭This project was created by GPN Australia for GPN‬
‭sites all around Australia!‬

‭This workbook and related materials were created by tutors at:‬

‭Sydney, Canberra and Perth‬

‭Girls’ Programming Network‬

‭If you see any of the following tutors don’t forget to thank them!!‬

‭Writers‬ ‭Testers‬

‭Sarah Mac‬
‭Renee Noble‬
‭Vivian Dang‬

‭Courtney Ross‬

‭Catherine Murdoch‬
‭Maddie Jones‬

‭Sheree Pudney‬

‭A massive thanks to our sponsors for supporting us!‬

‭|‬‭1‬

‭Part 0: Setting up‬

‭Task 0.1: Making a python file‬

‭1.‬ ‭Go to‬‭https://replit.com/‬
‭2.‬ ‭Sign up or log in‬

‭(we recommend signing in with Google if you have a Google account)‬

‭Task 0.2: Making a python file‬

‭1.‬ ‭Create‬‭a new project‬
‭2.‬ ‭Select‬‭Python‬‭for the template‬
‭3.‬ ‭Name your project‬‭scissors_paper_rock‬

‭TUTOR TIPS‬

‭Make sure the AI is turned off (the slides should prompt them)‬

‭Task 0.3: You’ve got a blank space, so write your name!‬

‭A main.py file will have been created for you!‬

‭1.‬ ‭At the top of the file use a comment to write your name!‬

‭Any line starting with # is a comment.‬
‭# This is a comment‬

‭2.‬ ‭Run your code using the ▶️‬‭Run‬‭button. It‬‭won’t‬‭do‬‭anything yet!‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 1:‬
‭☐‬‭You should have a file called main.py‬
‭☐‬‭Your file has your name at the top in a comment‬
‭☐‬‭Run your file and it does nothing!‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(no bonuses)‬‭:‬

‭# <the student's name>‬

‭|‬‭2‬

https://replit.com/

‭Part 1: Welcome Message‬

‭Task 1.1: Print a welcome and the rules‬

‭Welcome the player and print the rules!‬

‭Use a print to make it happen when you run your code:‬

‭TUTOR TIPS‬

‭You may need to remind them to use the F5 key to run the program‬

‭Hint‬

‭Want to print multiple lines at a time? You can use three sets of quotes instead of one, to‬
‭make your strings go over multiple lines‬

‭print‬‭(‬‭"""‬
‭Print‬
‭Three‬
‭Lines‬
‭"""‬‭)‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 2:‬
‭☐‬‭Print a welcome‬
‭☐‬‭Print the rules‬
‭☐‬‭Try running your code!‬

‭|‬‭3‬

‭TUTOR TIPS‬

‭Students may use multiple print statements or multi-line strings‬

‭The code should look like this‬‭(no bonuses)‬‭:‬

‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes‬
‭scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬

‭|‬‭4‬

‭2. Who played what?‬

‭Task 2.1: Make the computer play the same move every time!!‬

‭Make a variable for the computer’s move such as‬‭computer_move‬‭,‬‭set it to‬
‭"scissors"‬‭,‬‭"paper"‬‭or‬‭"rock"‬‭.‬

‭Task 2.2: Ask the human for their move‬

‭Use‬‭input‬‭to ask the human for their move and save‬‭their answer in a variable, name it‬
‭something like‬‭human_move.‬

‭It should look like this when you run your code:‬

‭Task 2.3: Print out the moves‬

‭Print out the moves the computer and the human have played.‬

‭It should look like this when you run your code:‬

‭|‬‭5‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 3:‬
‭☐‬‭Set a move for the computer‬
‭☐‬‭Ask the human to type in their move and store it‬‭in a variable‬
‭☐‬‭Print out the human and computers moves‬
‭☐‬‭Run your code!‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(no bonuses)‬‭:‬

‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes‬
‭scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭# 2.1, 2.2‬
‭computer_move =‬‭"scissors"‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭# 2.3‬
‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭★‬‭BONUS 2.4: Not so fast!!‬

‭This would look cooler if the computer paused before it said each line!‬

‭1)‬ ‭At the top of your file write‬‭import‬‭time‬
‭This will let us use what we need to use to make our program sleep for a few‬
‭seconds.‬

‭2)‬ ‭Before any‬‭print‬‭, add a line that says‬ ‭time.sleep(0.1)‬
‭This will make our program 'sleep' for a tenth of a second! You can adjust it to any‬
‭time you want.‬‭Try putting sleep between your print‬‭statements!‬

‭|‬‭6‬

‭★‬‭BONUS 2.5: Personalise the game‬

‭Waiting for the next lecture? Try adding this bonus feature!!‬

‭1.‬ ‭At the start of the game ask the human to enter their name. Store it in a variable‬
‭(maybe use‬‭player_name‬‭)‬

‭2.‬ ‭Change your other code so that every time it says “Human” it prints the player’s name‬
‭instead!‬

‭Remember you can add a variable to some text like this:‬
‭"Hello "‬‭+ player_name‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(with bonuses)‬‭:‬

‭import‬‭time‬
‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes‬
‭scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭# 2.5‬
‭player_name =‬‭input‬‭(‬‭"What is your name? "‬‭)‬
‭print‬‭(‬‭"Hello "‬‭+ player_name)‬

‭computer_move =‬‭"scissors"‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭# 2.4‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭|‬‭7‬

‭3. Win, lose or tie?‬
‭Let’s figure out who won the game!‬

‭Task 3.1: What are the different ways to win, lose and tie?‬

‭What are all the combinations of how the game could go? Finish this table (there is a‬
‭printout for you to use).‬

‭Human Move‬ ‭Computer Move‬ ‭Who Wins?‬

‭scissors‬ ‭scissors‬ ‭draw‬

‭scissors‬ ‭paper‬ ‭human‬

‭scissors‬ ‭rock‬ ‭computer‬

‭paper‬ ‭scissors‬ ‭computer‬

‭paper‬ ‭paper‬ ‭tie‬

‭paper‬ ‭rock‬ ‭human‬

‭rock‬ ‭scissors‬ ‭human‬

‭rock‬ ‭paper‬ ‭computer‬

‭rock‬ ‭rock‬ ‭tie‬

‭|‬‭8‬

‭Task 3.2: Store the combinations in a dictionary‬

‭Create a new dictionary called results, it will store all the data from the table above!‬

‭In this dictionary, each key should be a tuple of the human and computer move. The‬
‭corresponding value will be who wins!‬

‭Hint‬

‭Make sure the keys are created using (human_move, computer_move), just like in the‬
‭table above.‬

‭results = {(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭}‬

‭Task 3.3: Get the value using the key!‬

‭Using our dictionary, store who wins in a variable such as winner. Use the combination of‬
‭human_move‬‭and‬‭computer_move‬‭to create the key to‬‭get the value!‬

‭Then‬‭print‬‭out the winner to the screen!‬

‭Hint‬

‭Remember we can look things up in the dictionary with a‬‭tuple‬‭. Tuples go inside round‬
‭brackets and can be multiple items.‬

‭If we had a dictionary of holidays by month and date like this:‬
‭holidays = {(‬‭"December"‬‭, 25):‬‭"Christmas"‬‭, (‬‭"April"‬‭,‬‭25):‬‭"ANZAC Day"‬‭,‬

‭(‬‭"January"‬‭, 1):‬‭"New Year's Day"‬‭}‬

‭we might look things up like this:‬‭holidays[(month,‬‭date)]‬
‭holidays[(‬‭"January"‬‭, 1)]‬‭would return‬‭"New Year's‬‭Day"‬

‭Hint‬

‭Remember that (human_move, computer_move) is not the same as (computer_move,‬
‭human_move)! Order is important.‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 4:‬
‭☐‬‭Create a dictionary containing every combination‬‭of moves‬
‭☐‬‭Store who won in a variable‬

‭|‬‭9‬

‭☐‬‭Print out the winner‬
‭☐‬‭Run your code and test different moves!‬

‭TUTOR TIPS‬

‭●‬ ‭Students may need help getting started with the syntax of the results dict, guide‬
‭them through the first entry‬

‭●‬ ‭Students may struggle with the tuple being the key‬

‭The code should look like this‬‭(no bonuses)‬‭:‬
‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭computer_move =‬‭"scissors"‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬

‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬
‭# 3.2‬
‭results = {‬

‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬
‭# 3.3‬
‭winner = results[(human_move, computer_move)]‬
‭print‬‭(‬‭"The winner is "‬‭+ winner)‬

‭★‬‭BONUS 3.4: ROCK Rock rOcK!‬

‭Waiting for the next lecture? Try adding this bonus feature!!‬

‭We see that‬‭"Rock"‬‭is not the same as‬‭"rock"‬‭and our‬‭game only works when it's all in‬
‭lowercase. Make your game work when players input a move with capital letters such as‬
‭"Rock"‬‭or‬‭"sCissors"‬‭.‬

‭|‬‭10‬

‭"FrOg"‬‭.lower()‬‭will return‬‭"frog"‬‭. Try using‬‭.lower()‬‭on your variables to make‬
‭sure the human players move is converted to lowercase!‬

‭TUTOR TIPS‬

‭●‬ ‭Students might forget to assign the result of .lower() to a variable‬
‭●‬ ‭Students may try and create a new string, show them how to use the‬

‭lower function to override the variable‬

‭The code should look like this‬‭(with bonuses)‬‭:‬
‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭player_name =‬‭input‬‭(‬‭"What is your name? "‬‭)‬
‭print‬‭(‬‭"Hello "‬‭+ player_name)‬

‭computer_move =‬‭"scissors"‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭# 3.4‬
‭human_move = human_move.lower()‬

‭time.sleep(0.1)‬
‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬
‭winner = results[(human_move, computer_move)]‬
‭print‬‭(‬‭"The winner is "‬‭+ winner)‬

‭|‬‭11‬

‭4. Winner, Winner!‬
‭It’s time to tell the user who won the game!‬

‭Task 4.1: If it’s a tie!‬

‭Use an‬‭if‬‭,‬‭elif‬‭and‬‭else‬‭statements to print out the‬‭winner!‬

‭You should print different messages based on whether:‬
‭●‬ ‭It’s a tie‬
‭●‬ ‭The human won‬
‭●‬ ‭The computer won‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 5:‬
‭☐‬‭Your if statement prints “it’s a tie” if the moves‬‭are the same‬
‭☐‬‭Your elif statement prints “human won the game”‬
‭☐‬‭Your else statement prints “computer won the game”‬
‭☐‬‭Run your code and test different moves!‬

‭★‬‭BONUS 4.2: Name the winner!‬

‭Waiting for the next lecture? Try adding this bonus feature!!‬

‭Update your code so that instead of saying “The winner is human” refer to the human by‬
‭name, using the name you collect in Bonus 2.5.‬

‭|‬‭12‬

‭TUTOR TIPS‬

‭The code should look like this (‬‭No bonuses‬‭(except‬‭player name bonus, for bonus‬
‭4.2)‬‭):‬
‭# <the student's name>‬
‭import‬‭time‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭player_name =‬‭input‬‭(‬‭"What is your name? "‬‭)‬
‭print‬‭(‬‭"Hello "‬‭+ player_name)‬

‭computer_move =‬‭"scissors"‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭human_move = human_move.lower()‬

‭time.sleep(0.1)‬
‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬
‭winner = results[(human_move, computer_move)]‬
‭# 4.1‬
‭if‬‭winner ==‬‭"draw"‬‭:‬

‭print‬‭(‬‭"It's a tie"‬‭)‬
‭elif‬‭winner ==‬‭"human"‬‭:‬

‭# 4.2‬
‭print‬‭(player_name +‬‭"won the game"‬‭)‬

‭else‬‭:‬
‭print‬‭(‬‭"Computer won the game"‬‭)‬

‭|‬‭13‬

‭5. Smarter Computer‬
‭The computer keeps playing the same move! That’s no fun! Let’s make the computer choose‬
‭a random move!‬

‭Task 5.1: Import Random Library‬

‭To get access to cool random things we need to import random!‬

‭At the top of your file add this line:‬
‭import‬‭random‬

‭Task 5.2: Choose a random move!‬

‭Find your line of code where you set your computer move, improve this line by choosing a‬
‭random move.‬

‭Choose a random move for the computer using‬‭random.choice‬‭from a list of‬
‭"scissors"‬‭,‬‭"paper"‬‭or‬‭"rock"‬‭.‬

‭Hint‬

‭If I wanted to choose a random food for dinner I could use code like this:‬

‭dinner = random.choice([‬‭"pizza"‬‭,‬‭"chocolate"‬‭,‬‭"nutella"‬‭,‬‭"lemon"‬‭])‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to Part 6:‬
‭☐‬‭The computer plays a random move every time.‬
‭☐‬‭The line “Computer played: ….” prints different‬‭things out!‬
‭☐‬‭Try different moves against the computer, does the‬‭the correct‬

‭winner print?‬

‭|‬‭14‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(no bonuses)‬‭:‬
‭# <the student's name>‬
‭import‬‭random‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭# 5.2‬
‭computer_move = random.choice([‬‭"scissors", "paper",‬‭"rock"‬‭])‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭human_move = human_move.lower()‬

‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬
‭winner = results[(human_move, computer_move)]‬
‭# 4.1‬
‭if‬‭winner ==‬‭"draw"‬‭:‬

‭print‬‭(‬‭"It's a tie"‬‭)‬
‭elif‬‭winner ==‬‭"human"‬‭:‬

‭# 4.2‬
‭print‬‭(‬‭"Human won the game"‬‭)‬

‭else‬‭:‬
‭print‬‭(‬‭"Computer won the game"‬‭)‬

‭|‬‭15‬

‭★‬‭BONUS 5.3: A picture says a thousand words!‬

‭Waiting for the next lecture? Try adding this bonus feature!!‬

‭Instead of printing “The human played paper” it would be much cooler to print a picture of‬
‭a paper! Use ascii art to print images for what the human and computer played!‬

‭1.‬ ‭Go to this link:‬‭girlsprogramming.network/ascii‬‭And‬‭get the pictures for paper,‬
‭scissors and rock‬

‭2.‬ ‭At the top of your code, store each of these ascii images as a string in different‬
‭variables (maybe rock_pic, paper_pic, etc …)‬

‭3.‬ ‭Instead of just printing out the word the human or computer played, also print out‬
‭the correct picture to match what they played. You might need to use an if‬
‭statement to figure out which picture to print!‬

‭|‬‭16‬

http://girlsprogramming.newtork/ascii

‭TUTOR TIPS‬

‭The code should look like this‬‭(with bonuses)‬‭:‬
‭# <the student's name>‬
‭import‬‭random‬
‭import‬‭time‬
‭rock_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭paper_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭scissors_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭THE INTRO TEXT‬
‭"""‬‭)‬
‭player_name =‬‭input‬‭(‬‭"What is your name? "‬‭)‬
‭print‬‭(‬‭"Hello "‬‭+ player_name)‬
‭computer_move = random.choice([‬‭"scissors", "paper",‬‭"rock"‬‭])‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors, paper‬‭or rock? "‬‭)‬
‭human_move = human_move.lower()‬
‭# 5.3‬
‭if‬‭computer_move ==‬‭"paper"‬‭:‬

‭print‬‭(paper_pic)‬
‭elif‬‭computer_move ==‬‭"scissors"‬‭:‬

‭print‬‭(scissors_pic)‬
‭else‬‭:‬

‭print‬‭(rock_pic)‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭# 5.3‬
‭if‬‭human_move ==‬‭"paper"‬‭:‬

‭print‬‭(paper_pic)‬
‭elif‬‭human_move ==‬‭"scissors"‬‭:‬

‭print‬‭(scissors_pic)‬
‭else‬‭:‬

‭print‬‭(rock_pic)‬
‭time.sleep(0.1)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬

‭winner = results[(human_move, computer_move)]‬
‭if‬‭winner ==‬‭"draw"‬‭:‬

‭print‬‭(‬‭"It's a tie"‬‭)‬
‭elif‬‭winner ==‬‭"human"‬‭:‬

‭print‬‭(player_name +‬‭"won the game"‬‭)‬
‭else‬‭:‬

‭print‬‭(‬‭"Computer won the game"‬‭)‬

‭|‬‭17‬

‭6. Again, Again, Again!‬
‭We want to play Scissors-Paper-Rock more than once! Let’s add a loop to play on repeat!‬

‭Task 6.1: How many games?‬

‭Find out how many games the user wants to play at the start of the game!‬
‭Put this after your welcome message!‬

‭Hint‬

‭Input returns a‬‭string‬‭. Make sure you‬‭convert it to‬‭an int‬‭and store it in a variable!‬
‭int‬‭(‬‭"57"‬‭)‬‭will give you back 57. You can use‬‭int‬‭(...)‬‭on a variable too!‬

‭Task 6.2: Loop time!‬

‭Create a for loop that runs as many times as the user asked for!‬
‭You’ll need to use:‬

‭●‬ ‭A‬‭for‬‭loop‬
‭●‬ ‭range‬‭(number_of_games)‬

‭Use this line after you have asked how many games they want to play to start your loop:‬
‭for‬‭i‬‭in‬‭range‬‭(number_of_games):‬

‭Task 6.3: Indenting your code‬

‭Things we want to do every game need to be indented inside the loop.‬
‭We want to ask for a move and check the winner every round!‬

‭Hint‬

‭Indented lines have a tab at the start like this, they look this:‬

‭for‬‭blah‬‭in‬‭something:‬
‭THIS IS INDENTED‬

‭You can indent many lines at once by highlighting them and then hitting the tab key. Make‬
‭sure you highlight the whole line though!‬

‭Task 6.4: GAME OVER!‬

‭After all the rounds are played, print out “GAME OVER!”.‬
‭Make sure this is after your loop and doesn’t print every round!‬

‭|‬‭18‬

‭CHECKPOINT‬

‭If you can tick all of these off you can go to the Extensions:‬
‭☐‬‭Ask the user how many games they want to play‬
‭☐‬‭Your game repeats the number of times the user asked‬‭for‬
‭☐‬‭GAME OVER prints once, after all of the rounds!‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(no bonuses)‬‭:‬
‭# <the student's name>‬
‭import‬‭random‬
‭print‬‭(‬‭"""‬
‭---‬
‭Welcome to Human vs. Computer in Scissors, Paper, Rock!‬
‭---‬
‭Moves: choose scissors, paper or rock by typing in your selection.‬
‭Rules: scissors cuts paper, paper covers rock and rock crushes scissors.‬
‭Good luck!‬
‭------------‬
‭"""‬‭)‬
‭number_of_games =‬‭int‬‭(‬‭input‬‭(‬‭"How many games would‬‭you like to play? "‬‭))‬
‭# 6.2, 6.3‬
‭for‬‭i‬‭in‬‭range‬‭(number_of_games):‬

‭computer_move = random.choice([‬‭"scissors"‬‭,‬‭"paper"‬‭,‬‭"rock"‬‭])‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors,‬‭paper or rock? "‬‭)‬
‭human_move = human_move.lower()‬

‭print‬‭(‬‭"Computer Played: "‬‭+ computer_move)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭(‬‭"scissors"‬‭,‬‭"scissors"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"paper"‬‭):‬‭"human"‬‭,‬
‭(‬‭"scissors"‬‭,‬‭"rock"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"scissors"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"paper"‬‭):‬‭"draw"‬‭,‬
‭(‬‭"paper"‬‭,‬‭"rock"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"scissors"‬‭):‬‭"human"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"paper"‬‭):‬‭"computer"‬‭,‬
‭(‬‭"rock"‬‭,‬‭"rock"‬‭):‬‭"draw"‬‭,‬

‭}‬
‭winner = results[(human_move, computer_move)]‬
‭if‬‭winner ==‬‭"draw"‬‭:‬

‭print‬‭(‬‭"It's a tie"‬‭)‬
‭elif‬‭winner ==‬‭"human"‬‭:‬

‭print‬‭(player_name +‬‭"won the game"‬‭)‬
‭else‬‭:‬

‭print‬‭(‬‭"Computer won the game"‬‭)‬
‭print‬‭(‬‭"GAME OVER!!!"‬‭)‬

‭|‬‭19‬

‭7. Extension: Keeping Score!‬
‭Why play lots of games if we’re not even keeping count of who wins?? Let’s keep score!‬

‭Task 7.1: Counter!‬

‭Before your loop create two variables which are going to be your human and computer‬
‭counters. Start by setting them both to 0.‬

‭These will keep track of the human and computer scores throughout the game!‬

‭Task 7.2: Add 1!‬

‭Every time the computer or human wins we need to add one to the appropriate counter. If‬
‭it’s a tie, neither player gets a point!‬

‭Hint‬

‭You’ll need to add to a counter inside your if/elif statements whenever someone wins!‬

‭Task 7.3: And the winner is!‬

‭After all the games are played we need to report the overall winner.‬

‭Print out how many games the human and computer won each.‬
‭Then print out who the overall winner was!‬

‭Hint‬

‭Use an‬‭if‬‭statement to compare the scores to calculate‬‭the overall winner!‬

‭|‬‭20‬

‭TUTOR TIPS‬

‭The code should look like this‬‭(with bonuses)‬‭:‬
‭# <the student's name>‬
‭import‬‭random‬
‭import‬‭time‬
‭rock_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭paper_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭scissors_pic = <‬‭ascii‬‭art‬‭from‬‭website>‬
‭# <the student's name>‬
‭print‬‭(‬‭"""‬
‭WELCOME MESSAGE GOES HERE‬
‭"""‬‭)‬
‭number_of_games =‬‭int‬‭(‬‭input‬‭(‬‭"How many games would‬‭you like to play? "‬‭))‬
‭player_name =‬‭input‬‭(‬‭"What is your name? "‬‭)‬
‭print‬‭(‬‭"Hello "‬‭+ player_name)‬
‭# 7.1‬
‭human_counter = 0‬
‭computer_counter = 0‬
‭for‬‭i‬‭in‬‭range‬‭(number_of_games):‬

‭computer_move = random.choice([‬‭"scissors"‬‭,‬‭"paper"‬‭,‬‭"rock"‬‭])‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors,‬‭paper or rock? "‬‭)‬
‭human_move = human_move.lower()‬

‭PRINT OF ASCII ART GOES HERE‬

‭time.sleep(0.1)‬
‭print‬‭(‬‭"Human Played: "‬‭+ human_move)‬

‭results = {‬
‭DICTIONARY CONTENT IN HERE‬

‭}‬

‭winner = results[(human_move, computer_move)]‬
‭if‬‭winner ==‬‭"draw"‬‭:‬

‭print‬‭(‬‭"It's a tie"‬‭)‬
‭# 7.2‬
‭elif‬‭winner ==‬‭"human"‬‭:‬

‭print‬‭(player_name +‬‭"won the game"‬‭)‬
‭human_counter += 1‬

‭else‬‭:‬
‭print‬‭(‬‭"Computer won the game"‬‭)‬
‭computer_counter += 1‬

‭print‬‭(‬‭"GAME OVER!!!"‬‭)‬
‭print‬‭(‬‭"Human won " + str(human_counter) + " games"‬‭)‬
‭print‬‭(‬‭"Computer won " + str(computer_counter) + "‬‭games"‬‭)‬
‭if‬‭human_counter == computer_counter:‬

‭print‬‭(‬‭"Draw!"‬‭)‬
‭elif‬‭human_counter > computer_counter:‬

‭print‬‭(‬‭"Human is the winner!"‬‭)‬
‭else‬‭:‬

‭print‬‭(‬‭"Computer is the winner!"‬‭)‬

‭|‬‭21‬

‭★‬‭CHALLENGE 7.4: First to X‬

‭Right now we play a set number of games. But can you figure out how you could change‬
‭your program to keep playing until a player gets a certain number of points?‬

‭You might need to use a while loop, or a break, or something else you can think of!‬

‭TUTOR TIPS‬

‭Students may replace the for loop with a while loop like in this example:‬

‭human_counter = 0‬
‭computer_counter = 0‬
‭target = 5‬

‭while‬‭human_counter != target‬‭and‬‭computer_counter‬‭!= target:‬
‭...‬

‭8. Extension: That’s not a real move!‬
‭What happens if the human plays a wrong move, like Batman? Or does a typo, like “ppaer”?‬
‭Test your code and find out!‬

‭We need to make our code more robust! If you haven’t already, also make sure you also go‬
‭back and do Task 3.4.‬

‭Task 8.1: Check the move is valid!‬

‭Create a‬‭while‬‭loop that runs until the user enters‬‭a valid move of “scissors”, “paper” or‬
‭“rock”.‬

‭If the move isn’t valid, ask the user for their move again!‬

‭|‬‭22‬

‭TUTOR TIPS‬

‭The code should look like this:‬

‭while‬‭human_move !=‬‭"scissors" and human_move != "paper"‬‭and human_move‬
‭!= "rock"‬‭:‬

‭human_move =‬‭input‬‭(‬‭"What is your move? scissors,‬‭paper or rock? "‬‭)‬
‭human_move = human_move.lower()‬

‭This should follow the initial time that a move is asked for‬

‭★ CHALLENGE 8.2: Game Over! Shut Down! ★‬

‭Sometimes the user might say they want to play a certain number of rounds, but has to‬
‭leave before the rounds are finished.‬

‭Create an‬‭if‬‭statement that checks to see if the user‬‭entered “quit” as their move, and‬
‭close the game down.‬

‭Don’t forget to tell the user who the overall winner was!‬

‭TUTOR TIPS‬

‭The code should look like this:‬

‭while‬‭human_move !=‬‭"scissors"‬‭and‬‭human_move !=‬‭"paper"‬‭and‬‭human_move‬‭!=‬‭"rock"‬‭:‬
‭human_move =‬‭input‬‭(‬‭"What is your move? scissors,‬‭paper or rock? "‬‭)‬
‭human_move = human_move.lower()‬
‭if human_move ==‬‭"quit"‬‭:‬

‭|‬‭23‬

‭9. Extension: Scissors, Paper, Rock,‬
‭Lizard, Spock!‬
‭Let’s add some more moves and play Scissors, Paper, Rock, Lizard, Spock! Follow the‬
‭arrows in the picture to see who wins!‬

‭Task 9.1 Updated moves!‬

‭When you ask the user what move they want to play, include lizard and spock!‬

‭Make sure you give the computer the same options!‬

‭Task 9.2 Updated combos!‬

‭Update the moves dictionary to include all of the new combinations!‬
‭(There’s a table on the printout you can use to figure out the options).‬

‭★ CHALLENGE 9.3: Too much dictionary!!‬

‭Woah that dictionary got big! It’s got 25 combinations. But what if we dealt with all the ties‬
‭before we got to looking up the winner.?‬

‭Use an if statement to deal with ties and eliminate all the ties from the dictionary.‬

‭|‬‭24‬

‭Human Move‬ ‭Computer Move‬ ‭Who Wins?‬

‭scissors‬ ‭scissors‬ ‭Tie‬

‭scissors‬ ‭paper‬ ‭Human‬

‭scissors‬ ‭rock‬ ‭Computer‬

‭scissors‬ ‭lizard‬ ‭Human‬

‭scissors‬ ‭spock‬ ‭Computer‬

‭paper‬ ‭scissors‬ ‭Computer‬

‭paper‬ ‭paper‬ ‭Tie‬

‭paper‬ ‭rock‬ ‭Human‬

‭paper‬ ‭lizard‬ ‭Computer‬

‭paper‬ ‭spock‬ ‭Human‬

‭rock‬ ‭scissors‬ ‭Human‬

‭rock‬ ‭paper‬ ‭Computer‬

‭rock‬ ‭rock‬ ‭Tie‬

‭rock‬ ‭lizard‬ ‭Human‬

‭rock‬ ‭spock‬ ‭Computer‬

‭lizard‬ ‭scissors‬ ‭Human‬

‭lizard‬ ‭paper‬ ‭Human‬

‭lizard‬ ‭rock‬ ‭Computer‬

‭|‬‭25‬

‭lizard‬ ‭lizard‬ ‭Tie‬

‭lizard‬ ‭spock‬ ‭Human‬

‭spock‬ ‭scissors‬ ‭Human‬

‭spock‬ ‭paper‬ ‭Computer‬

‭spock‬ ‭rock‬ ‭Human‬

‭spock‬ ‭lizard‬ ‭Computer‬

‭spock‬ ‭spock‬ ‭Tie‬

‭|‬‭26‬

‭10. Extension: AI. The computer‬
‭reads your mind!‬
‭Let’s make the game more challenging by having the computer guess what move the user‬
‭will choose next, based on what the user has chosen before!‬

‭Task 10.1 Create the dictionary‬

‭Create an empty dictionary called‬‭ai‬‭for the computer.‬‭Store the move the human last‬
‭chose in another variable, such as‬‭last_move.‬

‭Task 10.2 Store what happens next!‬

‭In the dictionary, add the move that the human played last round as a‬‭key‬‭if it’s not‬
‭already in the dictionary. Then store the move that the human played this round in a‬‭list‬
‭as the‬‭value‬‭.‬

‭Make sure this happens every round!‬

‭Task 10.3 Get the computer to choose!‬

‭Now that the computer knows what the human played last time, get it to guess what you’ll‬
‭play next!‬

‭If the move the human played last is in the‬‭ai‬‭dictionary,‬‭choose the computer’s move‬
‭from the list of values. Otherwise, select the‬‭computer_move‬‭from the standard lists of‬
‭moves!‬

‭★ CHALLENGE 10.3: Pick the winner‬

‭Our computer move will now pick the more likely move to make it tie with the human. But‬
‭we want our computer to win!‬

‭Rather than storing what the human played as the value in the dictionary, store the move‬
‭that would win against the human instead.‬

‭|‬‭27‬

‭11. Extension: Write your own rules!‬
‭Scissors-Paper-Rock-Lizard-Spock is boring. Everyone’s already playing it! Let’s make our‬
‭own version!‬

‭Task 11.1: Ask the user for their moves!‬

‭Imagine your own game! Maybe it’s called “Cat Mouse Dog” , or “Lightning Dragon Wolf‬
‭Snake Wind”! Pretty much anything you can imagine! Maybe one move always wins!‬
‭Maybe one always loses!‬

‭Here’s how we write the game logistics for a few versions of the game:‬

‭Draw up your idea for some game logistics here:‬

‭|‬‭28‬

‭Task 11.1: Ask the user for their moves!‬

‭We might have lots of game ideas!! We don’t want to have to write a big dictionary for‬
‭each one! Let’s make the computer do some of the work!‬

‭1.‬ ‭Use‬‭input‬‭to ask the user to list all the different‬‭possible moves on one line.‬
‭2.‬ ‭Then‬‭split‬‭those options into a list called‬‭moves‬‭!‬

‭Task 11.2: Manual winning!‬

‭Create a‬‭for‬‭loop (or two for loops!) that runs through‬‭every combination and have the‬
‭user‬‭input‬‭if the winner was‬‭human‬‭,‬‭computer‬‭or‬‭tie‬‭.‬

‭Store the answers in a dictionary!‬

‭Task 11.3: Move it, move it!‬

‭Make sure that the computer and human are using the correct set of‬‭moves‬‭!‬

‭★ CHALLENGE 11.4: Work out the winners using for loops!★‬

‭Update your‬‭for‬‭loop so that if the user says that‬‭move1‬‭beats‬‭move2‬‭, the code knows‬
‭that‬‭move2‬‭loses to‬‭move1‬‭.‬

‭We also know that if‬‭move1‬‭and‬‭move2‬‭are the same‬‭move, that it's a tie! Create another‬
‭for‬‭loop that handles all the ties.‬

‭Store the answers in the dictionary!‬

‭★ CHALLENGE 11.5: Store the game mode!★‬

‭Putting in all the game logistics instructions takes a long time! We don’t want to do it every‬
‭game. If we could save and load the game modes we input it would be much better!‬

‭Use a file to store the game mode! At the start of a new game as the user if they want to‬
‭create a new game mode or load one from a file!‬

‭|‬‭29‬

