

Girls’ Programming Network

Scissors Paper Rock!

TUTORS ONLY

This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney, Canberra and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Sarah Mac
Renee Noble
Vivian Dang

Courtney Ross

Catherine Murdoch
Maddie Jones

Sheree Pudney

A massive thanks to our sponsors for supporting us!​

Platinum

Gold

Part 0: Setting up

Task 0.1: Login

1.​ Go to the EdStem link on the website www.girlsprogramming.network/workshop
2.​ Sign up or log in

Task 0.2: Navigate to the workbook

1.​ Click on the person behind the book icon to head to the lessons

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You should have logged into EdStem
☐ Be on the “Intro to EdStem” lesson page
☐ Have a go at printing “Hello World”

https://www.girlsprogramming.network/workshop

Part 1: Welcome Message

Task 1.1: Print a welcome and the rules

Welcome the player and print the rules!​
​
Use a print to make it happen when you run your code:

 CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Print a welcome
☐ Print the rules
☐ Try running your code!

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>

welcome_message = """

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
Task 1.1
print(welcome_message)

2. Who played what?

Task 2.1: Players can be humans or computers

Create a Player class that will store the name and move of each player. It should include
an __init__ function that takes the player’s name as an argument. We don’t know what
the player’s move is yet, so we can set it to None.

Create two Player instances, one in a variable called human and another in a variable
called computer. For now just pass in the names "Human" and "Computer".

Hint

Remember to use the self keyword as the first argument for the functions belonging to
the class (including __init__) and for defining any variables belonging to the class (such
as self.name).

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

Here is an example of how to create an instance of the Person class. It is calling the
special __init__ function, known as a constructor.

kim = Person("Kim", 33)

Remember:

●​ The kim variable is an instance of the object class Person
●​ You can have as many instances of the Person class as you like, each with their

own name and age. For example, you could make one for every girl at GPN!

Task 2.2: Make the computer play the same move every time!!

Add a set_move function to the Player class, and use this function to set the move for
the computer player to "scissors", "paper" or "rock".

Hint

Here is an example of how to call a function called add function that has been defined for
a class called Counter. Notice that the self keyword is not used outside the class.

c = Counter()
c.add(20)

Task 2.3: Ask the human for their move

Use input to ask the human for their move and save their answer in the human player
instance.

It should now look like this when you run your code:

Task 2.4: Print out the moves

Print out the moves the computer and the human have played. Remember to use the
name we have stored in the player instances.

It should now look like this when you run your code:

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ Your program contains a Player class
☐ There is a variable for the human player and the computer player
☐ Set a move for the computer
☐ Ask the human to type in their move and set their response
☐ Print out the human and computers moves

☐ Run your code!

★ BONUS 2.5: Personalise the game

Waiting for the next lecture? Try adding this bonus feature!!

At the start of the game ask the human to enter their name, and use this as the argument
to create the human player.

It should now look like this when you run your code:

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>

welcome_message = """

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your
selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

 def set_move(self, move):
 self.move = move

print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player("Human")
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

Task 2.1
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

print(welcome_message)

computer = Player("Computer")
human = Player("Human")

Task 2.2
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

 def set_move(self, move):
 self.move = move

print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player("Human")

Task 2.3
print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player("Human")
human.set_move(input("What is your move? scissors, paper or rock?
"))

Task 2.4
print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player("Human")
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

Bonus 2.5
print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player(input("What is your name? "))
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

3. Win, lose or tie?
Let’s figure out who won the game!

Task 3.1: What are the different ways to win, lose and tie?

What are all the combinations of how the game could go? Finish this table:

Human Move

Computer Move

Who Wins?

scissors scissors draw

scissors paper human

scissors rock

paper

Task 3.2: Add the players to a game

Create a Game class with an __init__ function that will take two players as arguments
and store them.

Task 3.3: Store the winning moves in a dictionary

Add a static variable to the Game class called win_moves which should contain a
dictionary of all the winning moves.

To find the winning moves, identify the rows where the human wins. You can then use the
human moves for the keys and the corresponding computer moves for the value.

Hint

To add a static variable you don’t need to use the self keyword, and you don’t need to
create an instance in order to access static variables. Here is an example of a class with a
static dictionary:

class MyClassName:
 my_dict = {'key1': 'value1', 'key2': 'value2'}

print(MyClassName.my_dict['key1'])

Task 3.4: Get the winner of the match

Add a get_match_winner function to the Game class that returns None if it's a tie, or
else the player object with the winning move.

Use if, elif and else statements to choose the correct return value:

●​ If both moves are the same, then the game is a tie.
●​ Else, if the first players move is the key to the second players move in the

win_moves dictionary, then the first player is the winner.
●​ Else the second player is the winner!

Hint

Use the return keyword in your function to send a value back to the code that called the
function. Here is an example of a function that returns the word “Fizz” if the argument
provided is divisible by 3:
def fizz(x):
 if x % 3 == 0:
 return "Fizz"
 else:
 return x

result = fizz(13) # Store the returned value
print(fizz(9)) # Or do something with the returned value

Task 3.5: Announce the winner!

Store the result from get_match_winner in a variable, and use this to print out the
winner of the match.

●​ If there is no winner print “It's a tie!”
●​ Otherwise print the winner’s name followed by “won the match”

Make sure you do this after you have set the moves for both the human and computer
players.

Hint

You will need to create an instance of Game with your human and computer players before
you can call the get_match_winner function.

CHECKPOINT

If you can tick all of these off you can go to Part 4:
☐ Your program contains a Game class
☐ Game has a dictionary containing winning move combinations
☐ Game has a function that selects a winner between two players
☐ Create a dictionary containing every combination of moves
☐ Store who won in a variable
☐ Print out the winner
☐ Run your code and test different moves!
☐ Test when you input “ROCK” or “Rock” instead of “rock”, what​
 happens?

★ BONUS 3.6: ROCK Rock rOcK!

Waiting for the next lecture? Try adding this bonus feature!!

We see that “Rock” is not the same as “rock” and our game only works when it’s all in
lowercase.

Try to make your game work when players input a move with capital letters such as
“Rock” or “sCissors”. Think about how you’d convert them to all lowercase.

★ CHALLENGE 3.7: Who has time for all this typing!?

It would be far more convenient for the user if they didn’t have to type in the whole word
for their move.

●​ Let’s transform the input to be standardised.
●​ What if the user only puts in one or two letters? “S” “ro” “PP”

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>

welcome_message = """

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your
selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

 def set_move(self, move):
 self.move = move

class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None

 if Game.win_moves[self.player1.move] ==
self.player2.move:
 return self.player1
 else:
 return self.player2

print(welcome_message)

computer = Player("Computer")
computer.set_move("rock")

human = Player("Human")
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

game = Game(human, computer)
winner = game.get_match_winner()
if not winner:
 print("It's a tie!\n")
else:
 print(winner.name, "won the match\n")

Task 3.2
class Game:
 # Student can use whatever variable names they like
 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

Task 3.3
class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

Task 3.4
class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if Game.win_moves[self.player1.move] == self.player2.move:
 return self.player1
 else:
 return self.player2

Task 3.5
print(welcome_message)

human = Player(input("What is your name? "))
human.set_move(input("What is your move? scissors, paper or rock?
"))

computer = Player("Computer")
computer.set_move("rock")

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

game = Game(human, computer)
winner = game.get_match_winner()
if not winner:
 print("It's a tie!\n")
else:
 print(winner.name, "won the match\n")

Bonus 3.6
human.set_move(input("What is your move? scissors, paper or rock?
").lower())

4. Smarter Computer
The computer keeps playing the same move! That’s no fun! Let’s make the computer choose
a random move!

Task 4.1: Import random library

To get access to cool random things we need to import random!

At the top of your file add this line:
import random

Task 4.2: Choose a random move!

Find your line of code where you set your computer move, improve this line by choosing a
random move.

Choose a random move for the computer using random.choice from a list of “paper”,
“scissors” and “rock”.

Hint

If I wanted to choose a random food for dinner I could use code like this:

dinner = random.choice(["pizza", "chocolate", "nutella",
"lemon"])

CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ The computer plays a random move every time.
☐ The line “Computer played: ….” prints different things out!
☐ Try different moves against the computer, does the the correct​
 winner print?

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>
import random

welcome_message = """

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your
selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

 def set_move(self, move):
 self.move = move

class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if Game.win_moves[self.player1.move] ==
self.player2.move:
 return self.player1
 else:
 return self.player2

print(welcome_message)

computer = Player("Computer")
computer.set_move(random.choice(["scissors", "paper", "rock"]))

human = Player("Human")
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

game = Game(human, computer)
winner = game.get_match_winner()
if not winner:
 print("It's a tie!\n")
else:
 print(winner.name, "won the match\n")

Task 4.1
<student's name>

import random

welcome_message = """
...

Task 4.2
print(welcome_message)

computer = Player("Computer")
computer.set_move(random.choice(["scissors", "paper", "rock"]))

human = Player(input("What is your name? "))
human.set_move(input("What is your move? scissors, paper or rock?
"))

print(computer.name, "played:", computer.move)
print(human.name, "played:", human.move)

game = Game(human, computer)
winner = game.get_match_winner()
if not winner:
 print("It's a tie!\n")
else:
 print(winner.name, "won the match\n")

5. Again, Again, Again!
We want to play Scissors-Paper-Rock more than once! Let’s add a loop to play on repeat!

Task 5.1: How many games?

Find out how many games the user wants to play. Put this after your welcome message!

Hint

Input returns a string. Make sure you convert it to an int and store it in a variable!

Remember int("57") will give you back 57. You can use int(...) on a variable too!

Task 5.2: Loop time!

Create a for loop that runs as many times as the user asked for.

Hint

You will need to use a for loop and the range(...) function to specify the number of
times to repeat the steps in your code. Here is an example:

for i in range(10):
 print(i) # This will be repeated 10 times
print("All done!") # This will not be repeated

Remember:

●​ You can use a variable with range(...) instead of 10.
●​ Things we want to do every game must be indented to be included in the loop.

Task 5.3: GAME OVER!

After all the rounds are played, print out “GAME OVER!”.
Make sure this is after your loop and doesn’t print every round!

CHECKPOINT

If you can tick all of these off you can go to the Part 6:
☐ Ask the user how many games they want to play
☐ Your game repeats the number of times the user asked for
☐ GAME OVER prints once, after all of the rounds!

☐ Test when the user inputs something “one” instead of 1 for the
 number of games they want to play, what happens?

★ CHALLENGE 5.4: “One” is the loneliest number

Waiting for the next lecture? Try adding this bonus feature!!

We found that our game will crash if the user does not input a valid number when
choosing the number of games to play.

We can make our program more user friendly by providing instructions for what happens
when the int(...) function results in a ValueError, and we can do this using the try
and except statements.

●​ The try statement defines a block of code where we want to watch out for
particular errors.

●​ The except statement provides instructions for the program to follow if the
specified error is encountered in the try block.

Here is an example from the Python online documentation that will run a loop until the user
enters a valid number:

while True:
 try:​
 x = int(input("Please enter a number: "))​
 break​
 except ValueError:​
 print("Oops! That was not a valid number. Try again...")

Try applying this example to your code!

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>
import random

welcome_message = """

https://docs.python.org/3/tutorial/errors.html#handling-exceptions

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your
selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None

 def set_move(self, move):
 self.move = move

class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if Game.win_moves[self.player1.move] ==
self.player2.move:
 return self.player1
 else:
 return self.player2

print(welcome_message)

number_matches = int(input("How many matches would you like to
play? "))

computer = Player("Computer")
human = Player("Human")

game = Game(human, computer)

for i in range(number_matches):

 computer.set_move(random.choice(["scissors", "paper",
"rock"]))
 human.set_move(input("What is your move? scissors, paper or
rock? "))

 print(computer.name, "played:", computer.move)
 print(human.name, "played:", human.move)

 winner = game.get_match_winner()
 if not winner:
 print("It's a tie!\n")
 else:
 print(winner.name, "won the match\n")
print("GAME OVER!")

Task 5.1
print(welcome_message)

number_matches = int(input("How many matches would you like to
play? "))
...

Task 5.2
print(welcome_message)

number_matches = int(input("How many matches would you like to
play? "))

These lines haven't changed and stay outside the loop
computer = Player("Computer")
human = Player(input("What is your name? "))
game = Game(human, computer)

for i in range(number_matches):
 # These lines haven't changed either but move inside the loop
 computer.set_move(random.choice(["scissors", "paper",
"rock"]))
 human.set_move(input("What is your move? scissors, paper or
rock? "))

 print(computer.name, "played:", computer.move)
 print(human.name, "played:", human.move)

 winner = game.get_match_winner()
 if not winner:
 print("It's a tie!\n")
 else:
 print(winner.name, "won the match\n")

Task 5.3
for i in range(number_matches):
 # The indented loop code goes here...

print("GAME OVER!")

Bonus Task 5.4
print(welcome_message)

while True:
 try:​
 number_matches = int(input("How many matches would you like
to play? "))​
 break​
 except ValueError:​
 print("Oops! That was no valid number. Try again...")

6. Keeping Score!
Why play lots of games if we’re not even keeping count of who wins?? Let’s keep score!

Task 6.1: Counter!

Add a score variable to the Player class. Make sure you set it to 0 in the __init__
function!

Task 6.2: Add 1!

Add an add_win function to the Player class that will increase score by 1 each time it
is called.

Every time the computer or human wins we need to call add_win on the correct instance
for the winning player. If it’s a tie neither player gets a point!

Hint

You added some code in Task 3.5 to print out whether the match was a tie or to announce
the winner. This would be a great place to update the score too!

Task 6.3: Get the winner

Add a get_game_winner function to the Game class that compares the scores of the two
players and returns the player with the highest score.

Hint

Refer back to Task 3.4 for hints on returning values from functions.

Task 6.4: And the winner is...

After all the games are played we need to report the overall winner.

●​ Print out how many games the human and computer won each.
●​ Call the get_game_winner function and print out who the overall winner was!
●​ Print a neutral message if both players tied.

The game over message should now looks something like this:

CHECKPOINT

If you can tick all of these off you can go to the Part 6:
☐ Player has a score variable which starts at 0
☐ Player has a function which increases the players score by 1
☐ Game has a function that selects the winner with the highest score
☐ Print the final score for each player at the end of the game
☐ Print the overall winner at the end of the game

★ CHALLENGE 6.5: First to X

Right now we play a set number of games. But can you figure out how you could change
your program to keep playing until a player gets to a certain number of points? ​
​
You might need to use a while loop, or a break, or something else you can think of!

TUTOR TIPS

The code should look like this (no bonuses):

<student's name>
import random

welcome_message = """

Welcome to Human vs. Computer in Scissors, Paper, Rock!

Moves: choose scissors, paper or rock by typing in your
selection.
Rules: scissors cuts paper, paper covers rock and rock crushes
scissors.
Good luck!

"""
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None
 self.score = 0

 def set_move(self, move):

 self.move = move

 def add_win(self):
 self.score += 1

class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if Game.win_moves[self.player1.move] ==
self.player2.move:
 return self.player1
 else:
 return self.player2

 def get_game_winner(self):
 if self.player1.score > self.player2.score:
 return self.player1
 elif self.player1.score < self.player2.score:
 return self.player2
 else:
 return None

print(welcome_message)

number_matches = int(input("How many matches would you like to
play? "))

computer = Player("Computer")
human = Player("Human")

game = Game(human, computer)

for i in range(number_matches):
 # These lines haven't changed either but move inside the loop
 computer.set_move(random.choice(["scissors", "paper",
"rock"]))

 human.set_move(input("What is your move? scissors, paper or
rock? "))

 print(computer.name, "played:", computer.move)
 print(human.name, "played:", human.move)

 winner = game.get_match_winner()
 if not winner:
 print("It's a tie!\n")
 else:
 winner.add_win()
 print(winner.name, "won the match\n")

print("---")
print("GAME OVER!")
print(human.name, "won", human.score, "matches")
print(computer.name, "won", computer.score, "matches")

winner = game.get_game_winner()
print(winner.name if winner else "No one", "is the winner!!")
print("---")

Task 6.1
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None
 self.score = 0

 def set_move(self, move):
 self.move = move

Task 6.2
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None
 self.score = 0

 def set_move(self, move):
 self.move = move

 def add_win(self):
 self.score += 1

The rest of the game setup code goes here...

for i in range(number_matches):
 # The rest of the loop code goes here...

 winner = game.get_match_winner()
 if not winner:
 print("It's a tie!\n")
 else:
 winner.add_win()
 print(winner.name, "won the match\n")

Task 6.3
class Game:
 win_moves = {
 "paper": "rock",
 "scissors": "paper",
 "rock": "scissors"}

 def __init__(self, player1, player2):
 self.player1 = player1
 self.player2 = player2

 def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if Game.win_moves[self.player1.move] ==
self.player2.move:
 return self.player1
 else:
 return self.player2

 def get_game_winner(self):
 if self.player1.score > self.player2.score:
 return self.player1
 elif self.player1.score < self.player2.score:
 return self.player2
 else:
 return None

Task 6.4
for i in range(number_matches):
 # The loop code goes here…

print("---")
print("GAME OVER!")
print(human.name, "won", human.score, "matches")
print(computer.name, "won", computer.score, "matches")

winner = game.get_game_winner()
print(winner.name if winner else "No one", "is the winner!!")
print("---")

7. That’s not a real move!
What happens if the human plays a wrong move, like Batman? Or does a typo, like “ppaer”?
Test your code and find out!

We need to make our code more robust! If you haven’t already, also make sure you also go
back and do Task 3.6.

Task 7.1: We’re repeating ourselves - let’s make a function

Asking the player for input shouldn’t be hanging out in the main game. It belongs in a
function!

1)​ Move your block of code asking what the user wants to do into a function in the
Player class.

2)​ Start the function with an input prompt
3)​ Then: while the variable is not in the list of acceptable answers we’re going

to ask again.
4)​ Once we get an acceptable answer, store it in self.move

CHECKPOINT

If you can tick all of these off you can go to the extensions:
☐ Input is transformed to upper or lower case
☐ Input is checked against list of allowed values
☐ Loop if the input is not in the list

★ CHALLENGE 7.2: Game Over! Shut Down!

Sometimes the user might say they want to play a certain number of rounds, but has to
leave before the rounds are finished.

Create an if statement that checks to see if the user entered “quit” as their move, and
close the game down.

Don’t forget to tell the user who the overall winner was!

Task 7.1
class Player:
 def __init__(self, name):
 self.name = name
 self.move = None
 self.score = 0

 def add_win(self):
 self.score += 1

 def print_move(self):
 print(self.name, "played:", Game.translator[self.move])

 def inputGame(self):
 user_hand = input("Please input your hand (R, P, or S)
(or Quit): ")
 user_hand = user_hand[:1].upper()
 while user_hand not in ['Q','R','P','S']:
 user_hand = input("Please input your hand (R, P, or
S) (or Quit): ")
 user_hand = user_hand[:1].upper()
 self.move = user_hand

 def print_score(self):
 print(self.name, "won", self.score, "matches")

Task 7.2
if __name__=="__main__":

 # Task 1.1
 print(welcome_message)

 human = Player(input("What is your name? "))
 print("Hello", human.name, "\n")

 computer = Player("Computer")

 game = Game(human, computer)

 while True:
 try:
 target_score = int(input("How many matches should win
the game? "))
 break
 except ValueError:
 print("Oops! That was not a value number. Try
again...")
 print()

 while human.score < target_score and computer.score <
target_score:

 human.inputGame()
 print(human.move)

 if human.move == "Q":
 print(human.name, "quits the game.\n")
 break

8. Extension: Scissors, Paper, Rock,
Lizard, Spock!
Let’s add some more moves and play Scissors, Paper, Rock, Lizard, Spock! Follow the
arrows in the picture to see who wins!

Task 8.1 Updated moves!

When you ask the user what move they want to play, include lizard and spock!

Make sure you give the computer the same options!

Task 8.2 Updated combos!

Update the moves dictionary to include all of the new combinations!

def inputGame(self):
 user_hand = input("Please input your hand (Rock, Paper,
Scissors, Lizard, or spocK) (or Quit): ")
 if user_hand[-1].upper()=="K":
 user_hand = "K"
 else:
 user_hand = user_hand[:1].upper()
 while user_hand not in Game.move_choices:
 user_hand = input("Please input your hand (Rock,
Paper, Scissors, Lizard, or spocK) (or Quit): ")
 if user_hand[-1].upper()=="K":
 user_hand = "K"
 else:
 user_hand = user_hand[:1].upper()
 self.move = user_hand

class Game:
 move_choices = ["S","P","R","L","K"]
 win_moves = {"P":["R","K"],
 "S":["P","L"],
 "R":["S","L"],
 "L":["K","P"],
 "K":["S","R"]}

 translator=
{"P":"Paper","S":"Scissors","R":"Rock","L":"Lizard","K":"Spock"}

def get_match_winner(self):
 if self.player1.move == self.player2.move:
 return None
 if self.player2.move in self.win_moves[self.player1.move]:
 return self.player1
 else:
 return self.player2

	
	
	Girls’ Programming Network
	Scissors Paper Rock!
	
	This project was created by GPN Australia for GPN sites all around Australia!
	Part 0: Setting up
	Task 0.1: Login

	
	Task 0.2: Navigate to the workbook
	CHECKPOINT

	
	Part 1: Welcome Message
	Task 1.1: Print a welcome and the rules
	 CHECKPOINT

	2. Who played what?
	Task 2.1: Players can be humans or computers
	Hint
	Task 2.2: Make the computer play the same move every time!!
	Hint
	Task 2.3: Ask the human for their move
	Task 2.4: Print out the moves
	CHECKPOINT
	★ BONUS 2.5: Personalise the game

	3. Win, lose or tie?
	Task 3.1: What are the different ways to win, lose and tie?
	Task 3.2: Add the players to a game
	Task 3.3: Store the winning moves in a dictionary
	Hint
	Task 3.4: Get the winner of the match
	Hint
	Task 3.5: Announce the winner!
	Hint
	CHECKPOINT
	★ BONUS 3.6: ROCK Rock rOcK!
	★ CHALLENGE 3.7: Who has time for all this typing!?

	4. Smarter Computer
	Task 4.1: Import random library
	Task 4.2: Choose a random move!
	Hint
	CHECKPOINT

	5. Again, Again, Again!
	Task 5.1: How many games?
	Hint
	Task 5.2: Loop time!
	Hint
	Task 5.3: GAME OVER!
	After all the rounds are played, print out “GAME OVER!”.
	Make sure this is after your loop and doesn’t print every round!
	CHECKPOINT
	★ CHALLENGE 5.4: “One” is the loneliest number

	6. Keeping Score!
	Task 6.1: Counter!
	Task 6.2: Add 1!
	Hint
	Task 6.3: Get the winner
	Hint
	Task 6.4: And the winner is...
	CHECKPOINT
	★ CHALLENGE 6.5: First to X

	
	7. That’s not a real move!
	Task 7.1: We’re repeating ourselves - let’s make a function
	CHECKPOINT
	★ CHALLENGE 7.2: Game Over! Shut Down!

	
	8. Extension: Scissors, Paper, Rock, Lizard, Spock!
	Task 8.1 Updated moves!
	Task 8.2 Updated combos!

