
Girls’ Programming Network

Password Cracker

In this workbook, you will learn how to encode
plaintext using a hash function and compare it with

a stored passphrase for authentication!

This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Alex McCulloch
Renee Noble
Caitlin Shaw
Taylah Griffiths

Sheree Pudney
Manou Rosenberg

| 1

Part 0: Setting up

Task 0.1: Making a python file

1. Go to https://replit.com/

2. Sign up or log in
(we recommend signing in with Google if you have a Google account)

Task 0.2: Making a python file

1. Create a new project

2. Select Python for the template

3. Name your project password_cracker

Task 0.3: You’ve got a blank space, so write your name!

A main.py file will have been created for you!

1. At the top of the file use a comment to write your name!

Any line starting with # is a comment.
This is a comment

2. Run your code using the▶ Run button. It won’t do anything yet!

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You should have a file called main.py
☐ Your file has your name at the top in a comment
☐ Run your file and it does nothing!

| 2

https://replit.com/

Part 1: Welcome to Passphrases

Task 1.1: Welcome to Passphrases

A passphrase is a sentence that has meaning for you and therefore easier to remember
than a password.

One example of a passphrase is: “The ship sails at midnight”

We use passphrases rather than passwords as they are longer than passwords and
therefore more secure.

Let’s make a variable called correct that stores a passphrase. This can be any
sentence you like!

Hint
To create variable called favourite and store a string in it:

favourite = "Chocolate"

Task 1.2: What is the passphrase?

Let’s guess what the passphrase is!

Use input to ask the user for their guess. Store their answer in a variable called guess
so we can use it in our code!

What is the passphrase?

Hint
To find out someone’s favourite ice-cream and store it in a variable called favourite

favourite = input("What is your favourite ice-cream? ")

| 3

Task 1.3: Let's see!

Now that we know the user’s guess, let’s print out the correct passphrase and the
guess.

For example, here is what your code might look like when you run it:

What is the passphrase? My guess passphrase
The ship sails at midnight
My guess passphrase

Hint

Remember to use the guess variable that you made in Task 1.2!

To print Hello we would use this code: print("Hello")

CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Create a variable storing the passphrase
☐ Ask for the passphrase
☐ Print the correct passphrase
☐ Print the guessed passphrase
☐ Try running your code!

| 4

Part 2: Is the guess correct?

Task 2.1: Check if they have guessed correctly!

Use an if statement to tell the user whether they have made the right guess.

You should welcome them if they got it right:

What is the passphrase? The ship sails at midnight
Welcome to the club!

Hint

In the if statement, compare the user’s guess with the passphrase you chose. Don’t forget
to use == .

To check if someone guessed my favourite fruit
guess= "apple"
if guess == "banana":
 print("I love bananas!")

Task 2.2: And if they got it wrong!

Under your if statement, add an else statement to tell the user when they made the wrong
guess.

You should tell them to go away if they have guessed wrong, like below:

What is the passphrase? At midnight the ship sails
Go away!

Hint

This is what an if and else statement looks like!
guess= "apple"
if guess == "banana":
 print("I love bananas!")
else:
 print(“I don’t like that fruit”)

| 5

Task 2.3: Stop printing

Now that we have our if and else statements, we don’t need to print out the correct
and guess variables anymore. You can delete those two print lines, or you can
comment them out.

Hint

To comment out a line of code you can add a # like this:

print(“something”)

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ Welcome them if they got the passphrase correct
☐ Tell them to go away if they are wrong
☐ Run your code and test different guesses
☐ Your code doesn’t print out the guess or correct passphrases

| 6

Part 3: What is Hashing?
Task 3.1: Hash a word by hand (no code for this part!)

First hash function
Replace each letter with its place in the alphabet:

G P N

Now add the numbers together:

Every time we follow this process for the acronym ‘GPN’, we will get the same number!

Now try hashing this word:

P N G

=

What number did you get? Is this a good thing? What happened here is called a collision!

Second hash function
Now try again but this time multiply the letter’s place in the alphabet by its place in the

word:

G P N P N G

= =

What do you notice?

Hint

You can use the table below to help find what number in the alphabet a letter is:

a b c d e f g h i j k l m n o p q r s t u v w x y z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

| 7

Task 3.2: Hash your name

Follow the same process as the second hash function and try to hash your name!

★ Bonus 3.3: Does Method 2 always work?★

Can you find a word that collides with GPN using our second hash function?

Hint

Collision is when 2 different words are hashed to the same number.

CHECKPOINT

If you can tick all of these off you can go to Part 4:
☐ Found the hash of GPN and PNG for both methods
☐ Found the hash value of your name

| 8

Part 4: Let’s hash our code!

Task 4.1: Import the hash library

First we need to import the python library that has pre-made hashing functions - this
makes our life easier as we can use code that has been written by other people!

At the very top of your code add the following line:

import hashlib

This tells our code to look for and use the hashlib library.

Task 4.2: Encode our passphrase

After we set the correct variable, create a new variable called correct_encoded and
set it to encode correct using the hashlib library.

Hint

To encode a variable, you use the following code (replace variable_name with the variable
you want to use):

name_encoded = name.encode()

Task 4.3: Time to hash the passphrase!

Create a new variable called correct_hashed. Hash the correct_encoded variable
and store it in correct_hashed.

Hint

To hash a variable, you use the following code (replace variable_name with the variable
you want to use):

name_hashed = hashlib.md5(name_encoded).digest()

Remember that hashlib is the library, md5 is the hashing algorithm and digest is what
shows us what the hash is.

| 9

Task 4.4: Print the hashed passphrase

Now that we have hashed the passphrase, let’s print the correct_hashed so we can
see what it looks like!

Once you run your code, copy the printed passphrase to a text file or add it as a comment
in your code to save it for use in the next part.

Hint

The hash should look something like this:

b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

Remember that you can save code as a comment like this:

#this is a comment

CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ Encoded your passphrase
☐ Hashed your passphrase
☐ Printed the hashed passphrase
☐ Run your code!
☐ Copied the printed hash to a text file or comment to use later

| 10

Part 5: Making our code secure.
At the moment if someone looks at our code they can see the passphrase written there - that
isn’t very secure!
To fix this we will store the hash of our passphrase only so that if someone sees our code
they can't read the passphrase.

Task 5.1: Replace the string with a hash

Delete the variable correct - replace it with a variable called correct_hashed.

Store the hash you copied in the previous part to this variable.

Hint

Remember that the hash should look something like this:

correct_hashed = b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

Task 5.2: Delete extra code

Now that we have saved our hashed passphrase, we can delete the code we wrote in the
last part.

Delete the line where we create the correct_encoded variable and the line where we
create the correct_hashed variable and the line where we print the hashed value.

Task 5.3: Encode the guess

Create a new variable called guess_encoded. Store the encoded value of our guess!

Hint

If you’ve forgotten how to do this, have another look at Part 4!

Task 5.4: Hash the guess

Create a new variable called guess_hashed. Store the hashed value of our
guess_encoded.

| 11

Hint

If you’ve forgotten how to do this, have another look at Part 4!

Task 5.5: Compare the hashes

Change your if statement to compare the guess_hashed variable and
correct_hashed variable instead of the guess and hash variables. Make sure the if
statement comes after all the hash code!

CHECKPOINT

If you can tick all of these off you can go to the extension:
☐ Remove the correct variable
☐ Encode the guess and store it in the variable guess_encoded

☐ Hash the guess and store it in the variable guess_hashed

☐ Change your if statement to compare hashes instead of strings
☐ Run your code!

| 12

Extension 6: Let’s get Cracking!
Here is a list of the 10 most common passwords. However, we only have the hashes and
forgot to write down what the plain password is! In this part, you will use your python
program from parts 0 to 5 to figure what the plain text for each hash is.

Plain text Username Hash

James b'\x81\xdc\x9b\xdbR\xd0M\xc2\x006\xdb\xd81>\xd0U'

Robert b"\xad\xffD\xc5\x10/\xca'\x9f\xceuY\xab\xf6o\xee"

John b'%\xf9\xe7\x942;E8\x85\xf5\x18\x1f\x1bbM\x0b'

Joseph b'\xd5\xaa\x17)\xc8\xc2S\xe5\xd9\x17\xa5&HU\xea\xb8'

Andrew b'\xd0v>\xda\xa9\xd9\xbd*\x95\x16(\x0e\x90D\xd8\x85'

Ryan b'\n\xcfE9\xa1K:\xa2}\xee\xb4\xcb\xdfn\x98\x9f'

Brandon b'\x1b\xbd\x88d`\x82p\x15\xe5\xd6\x05\xedD%"Q'

Jason b'vA\x9cXs\r\x9f5\xdez\xc58\xc2\xfdg7'

Sarah b'[\xad\xca\xf7\x89\xd3\xd1\xd0\x97\x94\xd8\xf0!\xf4\x0f\x0e
'

Amber b"_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99"

Each of these hashes will match one of these plain text passwords:

Task 6.1: What is the password?
Go back to the website for today's workshop. In your room folder, you should be able to
find a text file called account_info.txt with the list of the hashes provided above for
you to copy and paste into your python program for convenience.

For each hash given above, see if you can use the code you made today to work out the
hash of each of the possible plain passwords and match them up!

Once you figure out a username and password pair, try putting it into the Meme
Exchange website.

| 13

monkey 11111111 qazwsx ashley

password freedom michael starwars

123456789 1234

| 14

