
Girls’ Programming Network

Password Cracker

In this workbook, you will be getting salty with your
hashed passwords!

TUTORS ONLY



This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney, Perth and Canberra

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Alex McCulloch
Renee Noble
Caitlin Shaw
Taylah Griffiths

Manou Rosenberg

| 1



Part 0: Setting up
We are going to be looking at how to make hashes more secure by "salting" our passwords.

Task 0.1: Back to the beginning

Let's get started by opening the file we worked on in the first workbook.

Task 0.2: Getting the text files.

Make sure you download the file called “salty-accounts.txt” and add it to the folder we
made in the previous workbook.

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You should have the file from the first workbook open (main.py).
☐ You have a folder called rainbow_tables
☐ You have 3 .txt files in your folder common_passwords, accounts
and salty-accounts

| 2



Part 1: Creating Salted Hashed
Passwords
The idea of adding a salt is primarily to make it harder for rainbow tables to guess your
passwords, even if you have a common one. To add a salt, we select a string to be the “salt”
and add it to the end of a password before encoding

Task 1.1: Adding salt

Add two variables below the import statement:
1. One called salt with a value of “salty”
2. The other is called correct with a value of “The ship sails at

midnight” and salt (both strings added together).

Task 1.2: Encoding correct

Using the same encode method we used for guess, encode the variable correct,
calling it correct_encoded.

Task 1.3: Hashing correct

Using the same hash and digest method we used for guess, hash and digest the variable
correct, calling it correct_salted_hash.

CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Imported hashlib
☐ Created salt and correct variables
☐ Encoded correct
☐ Hashed and digested correct
☐ Try running your code!

| 3



TUTOR TIPS

Their code should look like this:

import hashlib

salt = "salty"
correct = "The ship sails at midnight" + salt
correct_encoded = correct.encode()
correct_salted_hashed = hashlib.md5(correct_encoded).digest()

correct_hashed = b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

guess = input("What is the passphrase? ")

guess_encoded = guess.encode()
guess_hashed = hashlib.md5(guess_encoded).digest()

if guess_hashed == correct_hashed:
print("Welcome to the club!")

else:
print("Go away!")

Note: this code should be in main.py

| 4



Part 2: Saving Salted Hash

Task 2.1: Changing the saved hash

Print out the value of correct_salted_hash and copy it into the correct_hashed
variable, replacing the old hash value. Then you can delete the print statement you just
wrote.

Task 2.2: Removing Lines

In this task we will be deleting some lines of code - we are deleting these so we do not
have our correct password visible to anyone who could read our code!

Remove the lines from the last pass that helped you make the salted hash. Make sure you
don’t delete the salt variable.

Task 2.3: Comparing salty things

To compare the guess with the correct answer, we need to add the salt to the guess as
well!

Before you encode the guess, add the salt to it.

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ Changed the variable name and value
☐ Removed the lines of code
☐ Added salt to the guess as well
☐ Run your code!

| 5



TUTOR TIPS

Their code should look like this:

import hashlib

salt = "salty"
correct_hashed = b'\xae\xbc\xe9f\xd1%Q\x8a\xf2\xfd\xba\xb2\x922`\xa5'

guess = input("What is the passphrase? ")
guess = guess + salt
guess_encoded = guess.encode()
guess_hashed = hashlib.md5(guess_encoded).digest()

if guess_hashed == correct_hashed:
print("Welcome to the club!")

else:
print("Go away!")

Note: this code should be in main.py

| 6



Part 3: Printing Salt!
We're going to try and guess the salt that is being used by coming up with every possible
salt (to make this easier we know that the salt is a number between 1000 and 9999 but in
the real world it would be very long and include letters and symbols) and trying to see if we
can crack a password with each salt - if we can crack one, then we know that's the salt that
is being used (again, to make this easier we're telling you that `password` is definitely being
used by at least one user).

Task 3.1: Loop through salt

Create a new file for this code. Call it salty_guesser.py In this new file, loop through
the numbers in the range of 1000-9999 and print out each one.

Hint

To print out number in the range of 1-10 you would write:

for number in range(1, 10):
print(number)

CHECKPOINT

If you can tick all of these off you can go to Part 4:
☐ Create a new file that contains a for loop
☐ Print out each possible salt
☐ Run your code!

TUTOR TIPS

Their code should look like this:

for salt in range(1000, 9999):
print(salt)

Note: this code should be in salty_guesser.py

| 7



Part 4: Saving a file to list!
This part should be done above the for loop created in the previous part.

Task 4.1: Creating a list

Create an empty list called salted_passwords.

Task 4.2: Open file and create a for loop

Open the file called salty-accounts.txt in a for loop so you can read each line.

Hint

If you’ve forgotten how to do this, have a look at your code from Workbook 2!

Tasks 4.3 - 4.6 will be written underneath this for loop.

Task 4.3: Strip the whitespace from each line

Use the .strip() method to remove the whitespace from each line.

sa

Task 4.4: Split each line at the comma

Next, we want to use the .split() method to split the account name away from the
account’s hashed password at the comma, and store it in a list called account.

Task 4.5: Add a password_hash variable

Put the second value from account into a variable called password_hash.

Task 4.6: Append to salted_passwords

Append password_hash to the list called salted_passwords.

Hint

To append something to a list we can use code like this:

pets = [“Emmy”, “Saphira”, “BiBi”]

pets.append(“Artemis”)

| 8



CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ Create an empty list
☐Create a for loop

Inside the for loop you:
☐ Stripped each line of whitespace
☐Split each line at the comma
☐Put each password_hash into a variable
☐Appended password_hash to salted_passwords

TUTOR TIPS

Their code should look like this:

salted_passwords = []

for line in open("salty-accounts.txt"):
line = line.strip()
account = line.split(",")
password_hash = account[1]
salted_passwords.append(password_hash)

for salt in range(1000, 9999):
print(salt)

Note: this code should be in salty_guesser.py

| 9



Part 5: Checking hash is salt
This entirety of the task is done underneath the for loop that is looping through possible salts

Task 5.1: Creating possible_salted

Create a variable called possible_salted with a value of “password” and add the salt
number to the end of “password” (make sure you change it to a string!)

Hint

To change a number into a string, use this code:
age = 17
birthday = “Happy Birthday! You are “ + str(age) + “ years old!”

Task 5.2: Creating possible_encoded

Create a variable called possible_encoded with a value of possible_salted
encoded.

Hint

Remember to import hashlib in this file!

Task 5.3: Hash and digest possible_encoded

Create a variable called possible_hashed with a value of possible_encoded
hashed and digested. Then make this variable a string!

Task 5.4: Check if possible_hashed in salted_passwords

Use an if statement to check if possible_hashed is in salted_passwords.
Under that if statement, print salt, then break from the loop. If it isn’t in
salted_passwords then we know this isn’t the salt, and the loop can keep going

CHECKPOINT

If you can tick all of these off you can go to Part 6:
☐ Created possible_salted
☐ Created possible_encoded
☐ Created possible_hashed
☐ Created if statement
☐ Printed salt

| 10



TUTOR TIPS

Their code should look like this:

import hashlib

salted_passwords = []

for line in open("salty-accounts.txt"):
line = line.strip()
account = line.split(",")
password_hash = account[1]
salted_passwords.append(password_hash)

for salt in range(1000, 9999):
possible_salted = "password" + str(salt)
possible_encoded = possible_salted.encode()
possible_hashed = str(hashlib.md5(possible_encoded).digest())

if possible_hashed in salted_passwords:
print(salt)
break

Note: this code should be in salty_guesser.py

| 11



Part 6: Adding to Rainbow Table
Adding the salt to our old rainbow table code. This part should all be written in our rainbow
table python file from Workbook 2

Task 6.1: Create salt

At the top of the file, create a variable called salt with the number value that you found in
the last part as a string.

Task 6.2: Add salt

Inside the first for loop, before we encode each password add the salt to the
password

Task 6.3: Changing the file

In the second for loop, instead of opening “accounts.txt”, open “salty-accounts.txt”.

CHECKPOINT

If you can tick all of these off you can go to Part 7:
☐ Added the salt to each password
☐ Using salty-accounts instead of the normal accounts file
☐ Run your code!

| 12



TUTOR TIPS

Their code should look like this:

import hashlib

rainbow = {}
salt = "7549"

for line in open("common-passwords.txt"):
password = line.strip()
password = password + salt
password_encoded = password.encode()
password_hash = hashlib.md5(password_encoded)
password_hash = str(password_hash.digest())
rainbow[password_hash] = password

for line in open("salty-accounts.txt"):
line = line.strip()
account = line.split(",")
name = account[0]
password_hash = account[1]
if password_hash in rainbow:

print(name)
print(rainbow[password_hash])

Note: this code should be in rainbow.py

| 13



7. Extension: Finding Secrets

Task 7.1: Secrets!

Using the accounts and passwords you found before, go to the following link to find
secrets on the website!
https://girls-programming-network.github.io/meme-exchange/

| 14

https://girls-programming-network.github.io/meme-exchange/

