
Welcome to the Labs

Welcome to the labs!

Platinum Sponsor:

Thank you to our Sponsors!

Who are the tutors?

Who are you?

Two Truths and a Lie

1. Get in a group of 3-5
people

2. Tell them three things
about yourself:
a. Two of these things

should be true
b. One of these things

should be a lie!
3. The other group members

have to guess which is the
lie

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

Click Content for your room. You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Today’s project!

Password Cracker!

Password Cracker!

Today’s project is split into 3 main parts!

In workbook 1 we are going to build a program that can make passwords
more secure using encoding, then compare an entered password with the
actual password to see if it matches!

In workbook 2 we are going to learn about the most common passwords
and how hackers utilise this to get into other peoples accounts, and how
we can use our new knowledge to find other people's passwords!

In workbook 3 we are going to focus on how we can make our storing or
passwords even more secure!

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given you
a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

print('This example is not part of the project’)

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do some extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Where do we program? In Replit!

Go to replit.com

You need to sign up or
sign in to start coding

● If you have a Google or Apple
account it’s easiest to use that.

● Or use an email address you
are able to log into.

● If you don’t have any of these,
ask a tutor for one of our spare
replit accounts to use today.

Creating our Repl It Project

Let’s create a new
project

Select Python for
the project template

Creating our Repl It Project

Don’t forget to
give your

project a name!

Name it after
today’s project!

Click Create Repl

Setting our Repl It Project

We can’t learn if something else is doing all the work!
So we are going to disable AI Autocomplete for this project!

Click the small AI icon in
the bottom left corner

Then sure there is no
tick in this box

We’re ready to code!

We’ll write our project
here in main.py

When you run your code,
the results will display in

the Console here

If Statements

Conditions

Sometimes, we want our code to make choices.

This means certain parts will only run if certain conditions are met.

Conditions can either be True or False.

Computers call true/false values booleans.

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

If Statements

We use if/elif/else
statements to:

● check which
conditions are
True/False

● pick which parts of
the code to run

word = "Chocolate"
if word == "GPN":
 print("GPN is awesome!")
elif word == "Chocolate":
 print("YUMMM Chocolate!")
else:
 print("The word isn’t GPN :(")

What happens??What is “elif”?

elif is short for “else if”

Project Time!

You now know all about if and else!

Let’s put what we learnt into our project
Try to do Parts 0 - 2!

 The tutors will be around to help!

Hashing

What is Hashing?

Hashing is the process of converting any piece of data
(called a key) into another value.

A hash function is used to generate the new value according to a
mathematical algorithm.

The result of a hash function is known as a hash value.

Reference from: https://www.educative.io/edpresso/what-is-hashing

https://www.educative.io/edpresso/what-is-hashing

What is Hashing?

How does it work?

We take a readable word or phrase (this is called plaintext) like this:

password

This is a plaintext word
that we can read!

How does it work?

We take a readable word or phrase (this is called plaintext) like this:

And we use a “Hash function” to turn it into something we can’t read!

What is Hashing?

This is a plaintext word
that we can read!

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

This is a hash value
that we can’t read!

This is the Hash Function

What is Hashing?

The coolest thing about a Hash function is that you can only go one way, so
you can’t work out what the plaintext word was if you only have the hash
value - this makes it secure!

password

This is a plaintext word
that we can read!

b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

This is a hash value
that we can’t read!

This is the Hash Function

x

Hashing in Python

Firstly to use the Python code we need to
import the hashing library!

We can do this by writing:

import hashlib

at the top of our code!

Encoding!

Next we need to prepare our data for hashing -
by encoding it!
my_string = “hello”

my_string_encoded = my_string.encode()

H 01101000

Encode

The computer can read
this ‘utf-8’ type and hash it!

8-bit

Hashing!

We had to encode the string as only very specific data
types like “utf-8” can be hashed.

Now we can actually hash our value!
To hash a value we can use the .md5
function written:

my_string_hashed = hashlib.md5(my_string_encoded)

Digest!

After hashing our variable we want to turn it into a
value we can use, so we use the .digest() method,
written:

my_string_hashed = hashlib.md5(my_string_encoded).digest()

print(my_string_hashed)

Result:
b']A@*\xbcK*v\xb9q\x9d\x91\x10\x17\xc5\x92'

Project Time!

Hashing!

Let’s put what we learnt into our project
Try to do Parts 3 - 5!

 The tutors will be around to help!

Rainbow Tables

What is a Rainbow Table?

How can we figure out a password?

Remember that we can not work backwards

from a hash because they are irreversible

But every unique string gives a unique hash

(e.g. if you hash ‘apple’ it will always give the same hash)

What if we work forwards instead?

We could guess the password!

What is a Rainbow Table?

Plaintext password = 'apple'

hashed password =
b’\x1f8p\xbe'OlI\xb3\xe3\x1a\x0cg(\x95\x7f’

What is a Rainbow Table?

We can make a lot of guesses!

A rainbow table is a collection of a lot of possible passwords

and their hashes

It makes sense to use the most common passwords in the table

This will help you break into the most accounts!

Rainbow tables show you “the entire spectrum of possibilities”.

https://stackoverflow.com/questions/5051608/why-is-it-called-rainbow-table

Let's Crack a password

We've discovered a list of leaked password hashes.

Let's try and crack one of them with a rainbow table!

What's the plaintext of

b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Our rainbow table

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match?

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match? No, let's try the next one

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match?

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match? No, let's try the next one

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match?

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match? No, let's try the next one.

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match?

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match? Yes! Now we can get the plaintext.

Let's Crack a password

Plaintext Hashes

password b'_M\xcc;Z\xa7e\xd6\x1d\x83'\xde\xb8\x82\xcf\x99'

password123 b'H,\x81\x1d\xa5\xd5\xb4\xbcmI\x7f\xfa\x98I\x1e8'

p@ssw0rd b'\x0f5\x97@\xbd\x1c\xda\x99O\x8bU3\x0c\x86\xd8E'

1234567890 b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

qwerty b'\xd8W\x8e\xdf\x84X\xce\x06\xfb\xc5\xbbv\xa5\x8c\\\xa4'

qwerty123 b'?\xc0\xa7\xac\xf0\x87\xf5I\xac+&k\xaf\x94\xb8\xb1'

Hash to crack: b'\xe8\x07\xf1\xfc\xf8-\x13/\x9b\xb0\x18\xcag8\xa1\x9f'

Do these match? Yes! Now we can get the plaintext. It's 1234567890

Choosing passwords

Storing hashes for every single possible password
would use up a lot of space.

So hackers usually only create rainbow tables
with the most common passwords……

Which is why you shouldn't use them. That would make
your account very easy to get into.

Data Breaches

Stealing passwords is something criminals are always trying to
do.
These companies have had their users' passwords exposed
online recently. How many of them do you use?

Facebook (2019) 533 million users
Linkedin (2021) 700 million users
Twitter (2018) 330 million users
Uber (2016) 57 million users
Twitch (2021) 7 million
Zoom (2020) 500,000

src: https://www.upguard.com/blog/biggest-data-breaches

https://www.upguard.com/blog/biggest-data-breaches

Data Breaches

Stealing passwords is something criminals are always trying to
do.
These companies have had their users' passwords exposed
online recently. How many of them do you use?

Facebook (2019) 533 million users
Linkedin (2021) 700 million users
Twitter (2018) 330 million users
Uber (2016) 57 million users
Twitch (2021) 7 million
Zoom (2020) 500,000

src: https://www.upguard.com/blog/biggest-data-breaches

Imagine how easy it
would be to hack into
your accounts if they
all used the same
password!

https://www.upguard.com/blog/biggest-data-breaches

Project Time!

Now that you've learnt all about rainbow
tables!

Let’s put what we learnt into our project
Try to do Part 0
of workbook 2!

 The tutors will be around to help!

Files and For Loops

Opening files!

We can store information inside files.

Then we can use these files in our code!

To get access to the stuff inside a file in python, we need to open it!

(That doesn’t mean clicking on the little icon)

for line in open(“test.txt”):

 print(line)

Important: The file needs to be in the same place as your code

Opening Files

Let’s break that code down a bit!

for line in open(“test.txt”):

 print(line)
This bit is called a for
loop, we’ll learn
about that in the next
few slides!

Opening Files

Let’s break that code down a bit!

for line in open(“test.txt”):

 print(line)
This bit is called a for
loop, we’ll learn
about that in the next
few slides!

Over here is where
we tell our code that
we want to open the
file!

Opening Files

Let’s break that code down a bit!

for line in open(“test.txt”):

 print(line)
This bit is called a for
loop, we’ll learn
about that in the next
few slides!

Over here is where
we tell our code that
we want to open the
file!

Here is where we put
the name of the file
we want to open

Opening Files

Let’s break that code down a bit!

for line in open(“test.txt”):

 print(line)
This bit is called a for
loop, we’ll learn
about that in the next
few slides!

Over here is where
we tell our code that
we want to open the
file!

Here is where we put
the name of the file
we want to open

Finally, this is what
we want to do with
each line of the file.

For loops allow you to do something for each item in a
group of things

There are many real world examples, like:

 For each page in this book:
 Read

 For each chip in this bag of chips:
 Eat

For Loops

Reading line by line

My cat wrote this Haiku for me and I want my program to print out each
line:
Wanna go outside.
Oh NO! Help I got outside!
Let me back inside!

Reading line by line

My cat wrote this Haiku for me and I want my program to print out each
line:
Wanna go outside.
Oh NO! Help I got outside!
Let me back inside!

We can use for loops to read individual lines of files

Reading line by line

My cat wrote this Haiku for me and I want my program to print out each
line:
Wanna go outside.
Oh NO! Help I got outside!
Let me back inside!

We can use for loops to read individual lines of files

for line in open('haiku.txt'):

 print(line)

What do you think
this will print?

Reading line by line

My cat wrote this Haiku for me and I want my program to print out each
line:
Wanna go outside.
Oh NO! Help I got outside!
Let me back inside!

We can use for loops to read individual lines of files

for line in open('haiku.txt'):

 print(line)

Wanna go outside.

Oh NO! Help! I got outside!

Let me back inside!

But there are extra lines?

Chomping off the newline

The newline character is represented by '\n':

print('Hello\nWorld')

Hello

World

We can remove it from the lines we read with .strip()

x = 'abc\n'

x.strip()

'abc'

Reading and stripping!

for line in open('haiku.txt'):

 line = line.strip()

 print(line)

Wanna go outside.

Oh NO! Help! I got outside!

Let me back inside!

No extra lines!

A missing file causes an error

This is what happens if you try to open a file that doesn’t
exist:

open('missing.txt')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IOError: [Errno 2] No such file or

directory: 'missing.txt'

Project Time!

Now you know how to use for loops and
files!

Try to do Part 1
of workbook 2!!

The tutors will be around to help!

Dictionaries

Dictionaries!

Look up
Hello

Get back
A greeting (salutation) said
when meeting someone or
acknowledging someone’s
arrival or presence.

You know dictionaries!
They’re great at looking up thing
by a word, not a position in a list!

Looking it up!

There are lots of
times we want to
look something up!

Phone Book Vending Machine

Competition
registration

Name → Phone number Treat Name → Price

Team Name → List of team members

Looking it up!

Phone Book

Name → Phone number
Key Value

We can use a dictionary for anything with a
key → value pattern!

Dictionaries anatomy!

This is a python dictionary!

This dictionary has Alex, Caitlin and Emma’s phone numbers

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

Stored in the
variable

phone_book

Has squiggly
brackets

Made up of
pairs of

information

Each pair is
made up of a
key and value

The pairs are
separated by

commas

Keys and values are
separated by a colon

Playing with dictionaries!

Let’s try using the phone book!
● Let’s create the phonebook
 >>> phone_book = {
 "Alex": 111, "Caitlin": 222, "Emma": 333
 }

● Let’s get Alex’s number from the phonebook. What will it be?
 >>> phone_book["Alex"]

Playing with dictionaries!

Let’s try using the phone book!
● Let’s create the phonebook
 >>> phone_book = {
 "Alex": 111, "Caitlin": 222, "Emma": 333
 }

● Let’s get Alex’s number from the phonebook. What will it be?
 >>> phone_book["Alex"]
 111

Updating our dictionaries!

● Alex changed her number. Let’s update it!
 >>> phone_book["Alex"] = 123
 >>> print(phone_book)

● We met Rowena! Let’s add her to our phone book
 >>> phone_book["Rowena"] = 444
 >>> print(phone_book)

Updating our dictionaries!

● Alex changed her number. Let’s update it!
 >>> phone_book["Alex"] = 123
 >>> print(phone_book)
 { "Alex": 123, "Caitlin": 222, "Emma": 333 }

● We met Rowena! Let’s add her to our phone book
 >>> phone_book["Rowena"] = 444
 >>> print(phone_book)

Updating our dictionaries!

● Alex changed her number. Let’s update it!
 >>> phone_book["Alex"] = 123
 >>> print(phone_book)
 { "Alex": 123, "Caitlin": 222, "Emma": 333 }

● We met Rowena! Let’s add her to our phone book
 >>> phone_book["Rowena"] = 444
 >>> print(phone_book)
 { "Alex": 123, "Caitlin": 222, "Emma": 333,
 "Rowena": 444 }

Project time!

You now know all about dictionaries!

Let’s put what we learnt into our project
Try to do Part 2
of workbook 2!

 The tutors will be around to help!

Python Lists

Lists can store multiple things

A list is an ordered group of related items, all stored in
the same variable

>>> day1 = 'Monday'
>>> day2 = 'Tuesday'
>>> day3 = 'Wednesday'
>>> day4 = 'Thursday'
>>> day5 = 'Friday'
>>> day6 = 'Saturday'
>>> day7 = 'Sunday'

>>> days = ['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday']

Your Favourite Things!

>>> faves = [‘books', ‘butterfly', ‘chocolate',
'skateboard']

[, , ,]

Accessing Lists!

● The favourites list holds four strings in order.

● We can count out the items using index numbers!

0 1 2 3

 -4 -3 -2 -1

● Indices start from zero!

You can put (almost) anything into a list

● You can have a list of integers
>>> primes = [1, 2, 3, 5, 11]

● You can have lists with mixed integers and strings
>>> mixture = [1, 'two', 3, 4, 'five']

● But this is almost never a good idea! You should be able to treat
every element of the list the same way.

Falling off the edge

Python complains if you try to go past the end of a list

>>> faves = ['books', 'butterfly', 'chocolate', 'skateboard']
>>> faves[4]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

Updating items!

We can also update things in a list:

>>> faves = ['books', 'butterfly', 'chocolate',
'skateboard']

>>> faves[1]
'Butterfly'

>>> faves[1] = 'new favourite'
>>> faves[1]
'new favourite'

Removing items!

● We can remove items from the list if they’re no longer needed!

● What if we decided that we didn’t like butterflies anymore?

 >>> faves.remove('butterfly')

● What does this list look like now?

 [, ,]

Looping over a list of ints

We can loop through a list:

numbers = [1, 2, 3, 4]
for i in numbers:
 print(i)

What’s going to happen?

Looping over a list of ints

We can loop through a list:

● Each item of the list takes a turn
at being the variable i

● Do the body once for each item
● We’re done when we run out of

items!

numbers = [1, 2, 3, 4]
for i in numbers:
 print(i)

What’s going to happen?
>>> 1
>>> 2
>>> 3
>>> 4

Project time!

Lists!

Let’s put what we learnt into our project
Try to do Parts 3 - 4

of workbook 2!

 The tutors will be around to help!

Salting

What is Salting?

Password salting is a technique to protect
passwords stored in databases by adding a string
of 32 or more characters and then hashing them.

Salting prevents hackers who breach an enterprise
environment from reverse-engineering passwords

and stealing them from the database.

Normal Hashing

Usually when you hash a password it looks like this:

This is a plaintext word
that we can read!

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

This is a hash value
that we can’t read!

This is the Hash Function

Normal Hashing

Usually when you hash a password it looks like this:

When we add a salt, it looks like this:

This is a plaintext word
that we can read!

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

This is a hash value
that we can’t read!

This is the Hash Function

password b'\xaf\xce\xe3G\x0c\x18\xef\xd5\xebZ\xcc\xc9E\xd1\\$'

This is the Hash Function

passwordxyz123

This is when we add a salt
In this case “xyz123”

Why Salty?

What is the point of adding a salt?

Imagine we have a rainbow table, then we know the hash of a common
password like this:

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

Why Salty?

What is the point of adding a salt?

Imagine we have a rainbow table, then we know the hash of a common
password like this:

But if we add a salt to every password, then a hacker looking for common
passwords won’t be able to use their rainbow table unless they also know
the salt.

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

passwordxyz123 b'\xaf\xce\xe3G\x0c\x18\xef\xd5\xebZ\xcc\xc9E\xd1\\$'

Why Salty?

What is the point of adding a salt?

Imagine we have a rainbow table, then we know the hash of a common
password like this:

But if we add a salt to every password, then a hacker looking for common
passwords won’t be able to use their rainbow table unless they also know
the salt.

password b'\xcc\xd6R\x16\xb9\x1bP~lK\x01\x0e\x063\x10\xec'

passwordxyz123 b'\xaf\xce\xe3G\x0c\x18\xef\xd5\xebZ\xcc\xc9E\xd1\\$'

These are not
the same hash!

Project time!

Salting!

Let’s put what we learnt into our project
Try to do Parts 0 - 5

of workbook 3!

 The tutors will be around to help!

Tell us what you think!

Click on the
End of Day Form
and fill it in now!

