
Welcome to GPN

Platinum Sponsor:

Thank you to our Sponsors!

Who are the tutors?

Who are you?

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Today’s project!

Markov Chains!

What is a Markov Chain?

A Markov chain is a simple Artificial Intelligence!

Let’s play a game with some cups to help explain it

Let’s play the cups game!

Let’s generate some text in the style of
Green Eggs & Ham by Dr Seuss

Do you like green eggs and ham?

I do not like them, Sam-I-am.

I do not like green eggs and ham.

Would you like them here or there?

I would not like them here or there.

I would not like them anywhere.

Let’s play the cups game!

● Each cup is labelled with a word from Green Eggs
and Ham

● Each cup contains the words that follow the
"label" word in Green Eggs and Ham

Let’s play the cups game!

Read the outside of your cup!
If you hear someone shout the word on the outside
of your cup:
1. Pick a piece of paper from inside your cup
2. Shout out the word on the piece of paper
3. Put the piece of paper back in your cup

Markov chains are exactly what we just did with the cups!

Today we’ll make the computer do it too to make some crazy stories!!

Here’s one we made from some Shakespeare!

Imagine if you used one of these to do your homework!!

Today we’ll be making Markov Chains!

doth stay! All days when I compare thee to unseeing
eyes be blessed made By chance, or eyes can see, For
all the top of happy show thee in dark directed. Then
thou, whose shadow shadows doth stay! All days when I
compare thee in your self in inward worth nor outward
fair, Can make bright, How would thy shade Through
heavy sleep on the eye of life repair, Which this,
Time's pencil, or my pupil pen, Neither in the living
day, When in eternal lines of that fair from fair
thou grow'st, So should the lines to a summer's day?

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given
you a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

print('This example is not part of the project’)

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do some extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Intro to Programming

What is programming?

It’s giving computers
a set of instructions!

Programming is not a
bunch of crazy numbers!

A Special Language

A language to talk
to dogs!

Programming is a
language to talk to

computers

People are smart! Computers are dumb!

Programming is
like a recipe!

Computers do
EXACTLY what
you say, every
time.

Which is great if
you give them a
good recipe!

People are smart! Computers are dumb!

But if you get it
out of order….

A computer
wouldn’t know
this recipe was
wrong!

People are smart! Computers are dumb!

Computers are
bad at filling in
the gaps!

A computer
wouldn’t know
something was
missing, it would
just freak out!

Everyone/thing has strengths!

● Does exactly what you tell it
● Does it the same every time
● Doesn’t need to sleep!
● Will work for hours on end!
● Get smarter when you tell

them how

● Understand instructions
despite:

● Spelling mistakes
● Typos
● Confusing parts

● Solve problems
● Tell computers what to do
● Get smarter every day

Intro to Python

Let’s get coding!

Where do we program?

We’ll use Repl It to make a Python project!

Go to replit.com in your web browser

Where do we program?

You need to sign up or
sign in to start coding

If you have a Google or Apple
account it’s easiest to use

that.

Or use an email address you
are able to log into.

Creating our Repl It Project

Let’s create a new
project

Select Python for
the project template

Creating our Repl It Project

Don’t forget to
give your

project a name!

Name it after
today’s project!

We’re ready to code!

We’ll write our project
here in main.py

You can test out Python
code in the console

Test the console! Make a mistake!

Type by button mashing the keyboard!
Then press enter!

Did you get a big red error message?

Good work you made an error!

● Programmers make A LOT of errors!
● Errors give us hints to find mistakes
● Run your code often to get the hints!!
● Mistakes won’t break computers!

AttributeError:
'NoneType' object
has no attribute
'foo'

TypeE
rror:

 Can'
t

conve
rt 'i

nt' o
bject

to st
r imp

licit
ly

Mistakes are great!
ImportError:

No module

named humour

KeyError:

‘Hairy Potter’

Sy
nt
ax
Er
ro
r:

In
va
li
d
Sy
nt
ax

Error messages help us fix our mistakes!
We read error messages from bottom to top

Traceback (most recent call last):

 File "C:/Users/Madeleine/Desktop/tmp.py", line 9, in <module>

 print("I have " + 5 + " apples")

TypeError: can only concatenate str (not "int") to str

We can learn from our mistakes!

1. What went wrong

3. Where that
code is

2. What code
didn’t work

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

It prints the words “hello world” onto the
screen!

Tell me more!

We can print things in lots of different ways in python!
>>> print("Hello world!")
Hello world!
>>> print("Hello", "world!")
Hello world!
>>> print("Hello", "world", end="!")
Hello world!

Note that this last one will not have a new line after it!

Tell me more!

We can print things in lots of different ways in python!
>>> print("Hello world!")
Hello world!
>>> print("Hello", "world!")
Hello world!
>>> print("Hello", "world", end="!")
Hello world!

Note that this last one will not have a new line after it!

Tell me more!

We can print things in lots of different ways in python!
>>> print("Hello world!")
Hello world!
>>> print("Hello", "world!")
Hello world!
>>> print("Hello", "world", end="!")
Hello world!

Note that this last one will not have a new line after it!

Tell me more!

We can print things in lots of different ways in python!
>>> print("Hello world!")
Hello world!
>>> print("Hello", "world!")
Hello world!
>>> print("Hello", "world", end="!")
Hello world!

Note that this last one will not have a new line after it!

Variables

Variables are useful
for storing things

that change
(i.e. things that "vary" - hence the

word "variable")

You can think of it like
putting information in a
box and giving it a name

name

Alex

Variables

Instead of writing a name, we can use the
name that is inside our variable! Here, we
get the name out of the box.

print(name)

name

Alex

Variables

Instead of writing a name, we can use the
name that is inside our variable! Here, we
get the name out of the box.

print(name)

name

Alex

Alex

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

What will this output?

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

My favourite animal is a dog
My favourite animal is a cat
My favourite animal is a catdog

What will this output?

Asking a question!

It’s more fun when we get to interact with the computer!

Let’s get the computer to ask us a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

What is your name? Maddie

Hello Maddie

Asking a question!

It’s more fun when we get to interact with the computer!

Let’s get the computer to ask us a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

What is your name? Maddie

Hello Maddie

Asking a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

What is your name? Maddie

Hello Maddie

Store the answer
in the variable

my_name

Writing input tells
the computer to

wait for a response

This is the question
you want printed to

the screen

We can use the answer
the user wrote that we

then stored later!

Coding in a file!

Part 0 of your workbook is to create a new file. This is a picture of
how to do it in IDLE

Name your file markov_chains.py

Adding a comment!

Sometimes we want to write things in code that the
computer doesn’t look at! We use comments for that!

Use comments to write a note or explanation of our code
Comments make code easier for humans to understand

We can make code into a comment if we don’t want it to
run (but don’t want to delete it!)

This code was written by Sheree

print(“Goodbye world!”)

Project time!

You now know all about printing, variables
and input!

Let’s put what we learnt into our project
Try to do Part 0 - Part 2

 The tutors will be around to help!

If Statements and Lists

Conditions!

Conditions let us make decision.
First we test if the condition is met!
Then maybe we’ll do the thing

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

True

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

True

False

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

True

False

False

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

True

False

False

True

Booleans (True and False)

Computers store whether a condition is met in the form
of

True and False

To figure out if something is True or False we do a
comparison

"Dog" == "dog"

"D" in "Dog"

"Q" not in "Cat"

5 < 10

3 + 2 == 5

5 != 5

True

True

False

False

True

True

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

That’s the
condition!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

That’s the
condition!

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

True

Put in the
answer to
the question

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

True

What do you think happens?
>>>

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

True

What do you think happens?
>>> that’s a small number

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

Conditions

Find out if it’s True!

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

False

Put in the
answer to
the question

Is it True that fave_num is less than 10?

● Well, fave_num is 9000
● And it’s not True that 9000 is less than 10
● So it is False!

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>>

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>> Nothing!

If statements

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

This line …

… controls this line

If statements

fave_num = 5
if fave_num < 10:
 print("that’s a small number")
 print("and I like that")
 print("A LOT!!")

This line …

… controls anything below it
that is indented like this!

Actually …..

If statements

fave_num = 5
if fave_num < 10:
 print("that’s a small number")
 print("and I like that")
 print("A LOT!!")

What do you think happens?
>>>

If statements

fave_num = 5
if fave_num < 10:
 print("that’s a small number")
 print("and I like that")
 print("A LOT!!")

>>> that’s a small number
>>> and I like that
>>> A LOT!!

If statements

word = "GPN"
if word == "GPN":
 print("GPN is awesome!")

What happens?

If statements

word = "GPN"
if word == "GPN":
 print("GPN is awesome!")

What happens?
>>> GPN is awesome!

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too
>>> shopping_item1 = "Bread"
>>> shopping_item2 = "Chocolate"
>>> shopping_item3 = "Ice Cream"
>>> shopping_item4 = "Pizza"

So much repetition!

Instead we use a python list!
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream",
"Pizza"]

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Project Time!

You now know all about if and lists!

See if you can do Part 3

 The tutors will be around to help!

Random!

That’s so random!

There’s lots of things in life that

are up to chance or random!

We want the computer to

be random sometimes!

Python lets us import common

bits of code people use! We’re

going to use the random module!

>>> import random

>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random.choice(shopping_list)

Using the random module

Let’s choose something randomly from a list!

This is like drawing something out of a hat in a raffle!

Here's an example!

1. Import the random module!

2. Copy the shopping list into IDLE

3. Choose randomly! Try it a few times!

Using the random module

You can also assign your random choice to a variable

>>> import random
>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random_food = random.choice(shopping_list)

>>> print(random_food)

Project Time!

Raaaaaaaaaandom! Can you handle that?

Let’s try use it in our project!
Try to do Part 4

 The tutors will be around to help!

For Loops

For loops allow you to do something a certain number of
times.

We use them when we know exactly how many times we
want to do something!

For Loops

For Loops

number = 10
for i in range(number):
 #Do something

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)The code indented in

the loop is what will
happen every time.

We can loop through a list:

We do what’s in the for loop as
many times as what is in the
“range”

friends = 4
for i in range(friends):
 print(“Hello friend!”)

Looping how many times?

What’s going to happen?

We can loop through a list:

We do what’s in the for loop as
many times as what is in the
“range”

friends = 4
for i in range(friends):
 print(“Hello friend!”)

>>> Hello friend!
>>> Hello friend!
>>> Hello friend!
>>> Hello friend!

Looping how many times?

What’s going to happen?

Project Time!

Now you know how to use a for loop!

Try to do Part 5
...if you are up for it!

The tutors will be around to help!

Lists and Dictionaries

Dictionaries!

Look up
Hello

Get back
A greeting (salutation) said
when meeting someone or
acknowledging someone’s
arrival or presence.

You know dictionaries!
They’re great at looking up thing
by a word, not a position in a list!

Looking it up!

There are lots of
times we want to
look something up!

Phone Book Vending Machine

Competition
registration

Name → Phone number Treat Name → Price

Team Name → List of team members

Looking it up!

Phone Book

Name → Phone number
Key Value

We can use a dictionary for anything with a
key → value pattern!

Dictionaries anatomy!

This is a python dictionary!

This dictionary has Alex, Caitlin and Emma’s phone numbers

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

Stored in the
variable

phone_book

Has squiggly
brackets

Made up of
pairs of

information

Each pair is
made up of a
key and value

The pairs are
separated by

commas

Keys and values are
separated by a colon

Playing with dictionaries!

Let’s try using the phone book!
● Let’s create the phonebook
 >>> phone_book = {
 "Alex": 111, "Caitlin": 222, "Emma": 333
 }

● Let’s get Alex’s number from the phonebook
 >>> phone_book["Alex"]
 111

Cups!!

Remember the cups activity from the start of the day?

A Single Cup!

The word “A” can be followed by Any of these words

Key Value

A Single Cup!

The word “A” can be followed by Any of these words

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

We can store the
slips of paper as
a python list!

A Single Cup!

The word “A” can be followed by Any of these words

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

We want to look up
the word “a” and get
back the list!

{'a' : }

A Single Cup!

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

{'a' : }

So we get a Dictionary with a List value!

If you look up “A” you get back a list of all the
words that can follow “a”

Key Value

Cups → Dictionary with lists!

Here’s what it looks like for a few more cups!

cups = {'am': ['Sam', 'That'],
 'In': ['a', 'a', 'a'],
 'a' : ['house', 'mouse',
 'house', 'mouse',
 'box', 'fox', 'box',
 'fox', 'house',
 'Mouse']

}

You can get the whole cup dictionary from today's
website!

Project time!

You now know all about lists and
dictionaries!

Let’s put what we learnt into our project
Try to do Part 6

 The tutors will be around to help!

