
Welcome to GPN

Platinum Sponsor:

Thank you to our Sponsors!

Who are the tutors?

Who are you?

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Today’s project!

Markov Chains!

What is a Markov Chain?

A Markov chain is a simple Artificial Intelligence!

Let’s play a game with some cups to help explain it

Let’s play the cups game!

Let’s generate some text in the style of
Green Eggs & Ham by Dr Seuss

Do you like green eggs and ham?

I do not like them, Sam-I-am.

I do not like green eggs and ham.

Would you like them here or there?

I would not like them here or there.

I would not like them anywhere.

Let’s play the cups game!

● Each cup is labelled with a word from Green Eggs
and Ham

● Each cup contains the words that follow the label
in Green Eggs and Ham

Let’s play the cups game!

Read the outside of your cup!
If you hear someone shout the word on the outside
of your cup:
1. Pick a piece of paper from inside your cup
2. Shout out the word on the piece of paper
3. Put the piece of paper back in your cup

Markov chains are exactly what we just did with the cups!

Today we’ll make the computer do it too to make some crazy stories!!

Here’s one we made from some Shakespeare!

Imagine if you used one of these to do your homework!!

Today we’ll be making Markov Chains!

doth stay! All days when I compare thee to unseeing
eyes be blessed made By chance, or eyes can see, For
all the top of happy show thee in dark directed. Then
thou, whose shadow shadows doth stay! All days when I
compare thee in your self in inward worth nor outward
fair, Can make bright, How would thy shade Through
heavy sleep on the eye of life repair, Which this,
Time's pencil, or my pupil pen, Neither in the living
day, When in eternal lines of that fair from fair
thou grow'st, So should the lines to a summer's day?

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given
you a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do some extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Intro to Python

Let’s get coding!

Where do we program? In IDLE

Click the start button and type IDLE!
Make sure you click one that says Python 3.x

You should get something like this!

Make a mistake!

Type by button mashing the keyboard!
Then press enter!

asdf asdjlkj;pa j;k4uroei

Did you get a big red error message?

Good work you made an error!

● Programmers make A LOT of errors!
● Errors give us hints to find mistakes
● Run your code often to get the hints!!
● Mistakes won’t break computers!

AttributeError:
'NoneType' object
has no attribute
'foo'

TypeE
rror:

 Can'
t

conve
rt 'i

nt' o
bject

to st
r imp

licit
ly

Mistakes are great!
ImportError:

No module

named humour

KeyError:

‘Hairy Potter’

Sy
nt
ax
Er
ro
r:

In
va
li
d
Sy
nt
ax

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

It prints the words “hello world” onto the
screen!

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

What will this output?

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

My favourite animal is a dog
My favourite animal is a cat
My favourite animal is a catdog

What will this output?

Asking a question!

It’s more fun when we get to interact with the computer!

Let’s get the computer to ask us a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

Asking a question!

It’s more fun when we get to interact with the computer!

Let’s get the computer to ask us a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

What is your name? Maddie

Hello Maddie

Asking a question!

my_name = input('What is your name? ')

print('Hello ' + my_name)

What do you think happens?

What is your name? Maddie

Hello Maddie

Store the answer
in the variable

my_name

Writing input tells
the computer to

wait for a response

This is the question
you want printed to

the screen

We can use the answer
the user wrote that we

then stored later!

Coding in a file!

Code in a file is code we can run multiple times! Make a reusable “hello
world”!

1. Make a new file called hello.py, like the picture
2. Put your print('hello world') code in it
3. Run your file using the F5 key

Adding a comment!

Sometimes we want to write things in code that the
computer doesn’t look at! We use comments for that!

Use comments to write a note or explanation of our code
Comments make code easier for humans to understand

We can make code into a comment if we don’t want it to
run (but don’t want to delete it!)

This code was written by Sheree

print(“Goodbye world!”)

Project time!

You now know all about printing and
variables and input!

Let’s put what we learnt into our project
Try to do Part 0 - Part 2

 The tutors will be around to help!

If Statements and Lists

Conditions!

Conditions let us make decision.
First we test if the condition is met!
Then maybe we’ll do the thing

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>>

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>> that’s a small number

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>>

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>> Nothing!

If statements

word = "GPN"
if word == "GPN":
 print("GPN is awesome!")

What happens?

If statements

word = "GPN"
if word == "GPN":
 print("GPN is awesome!")

What happens?
>>> GPN is awesome!

If statements

word = "GPN"
if word == "GPN":
 print("GPN is awesome!")

What happens?
>>> GPN is awesome!But what if we

want something
different to
happen if the
word isn’t "GPN"

Else statements

word = "Chocolate"
if word == "GPN":
 print("GPN is awesome!")
else:
 print("The word isn’t GPN :(")

What happens?

else
statements

means something
still happens if

the if statement
was False

Else statements

word = "Chocolate"
if word == "GPN":
 print("GPN is awesome!")
else:
 print("The word isn’t GPN :(")

What happens?
>>> The word isn’t GPN :(

else
statements

means something
still happens if

the if statement
was False

Elif statements

word = "Chocolate"
if word == "GPN":
 print("GPN is awesome!")
elif word == "Chocolate":
 print("YUMMM Chocolate!")
else:
 print("The word isn’t GPN :(")

What happens?

elif
Means we can
give specific

instructions for
other words

Elif statements

word = "Chocolate"
if word == "GPN":
 print("GPN is awesome!")
elif word == "Chocolate":
 print("YUMMM Chocolate!")
else:
 print("The word isn’t GPN :(")

What happens?
>>> YUMM Chocolate!

elif
Means we can
give specific

instructions for
other words

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too
>>> shopping_item1 = "Bread"
>>> shopping_item2 = "Chocolate"
>>> shopping_item3 = "Ice Cream"
>>> shopping_item4 = "Pizza"

So much repetition!

Instead we use a python list!
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream",
"Pizza"]

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Project Time!

You now know all about if and lists!

See if you can do Part 3

 The tutors will be around to help!

Random!

That’s so random!

There’s lots of things in life that

are up to chance or random!

We want the computer to

be random sometimes!

Python lets us import common

bits of code people use! We’re

going to use the random module!

>>> import random

>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random.choice(shopping_list)

Using the random module

Let’s choose something randomly from a list!

This is like drawing something out of a hat in a raffle!

Try this!

1. Import the random module!

2. Copy the shopping list into IDLE

3. Choose randomly! Try it a few times!

Using the random module

You can also assign your random choice to a variable

>>> import random
>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random_food = random.choice(shopping_list)

>>> print(random_food)

Project Time!

Raaaaaaaaaandom! Can you handle that?

Let’s try use it in our project!
Try to do Part 4

 The tutors will be around to

For Loops

For loops allow you to do something a certain number of
times.

We use them when we know exactly how many times we
want to do something!

For Loops

For Loops

number = 10
for i in range(number):
 #Do something

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)The code indented in

the loop is what will
happen every time.

Looping how many times?

We can loop through a list:

friends = 4
for i in range(friends):
 print(“Hello friend!”)

What’s going to happen?

We can loop through a list:

friends = 4
for i in range(friends):
 print(“Hello friend!”)

>>> Hello friend!
>>> Hello friend!
>>> Hello friend!
>>> Hello friend!

Looping how many times?

What’s going to happen?

We can loop through a list:

We do what’s in the for loop as
many times as what is in the
“range”

friends = 4
for i in range(friends):
 print(“Hello friend!”)

>>> Hello friend!
>>> Hello friend!
>>> Hello friend!
>>> Hello friend!

Looping how many times?

What’s going to happen?

Project Time!

Now you know how to use a for loop!

Try to do Part 5
...if you are up for it!

The tutors will be around to help!

Lists and Dictionaries

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too!

So much repetition!!

Instead we use a python list!

shopping_item1 = "Bread"

shopping_item2 = "Chocolate"

shopping_item3 = "Ice Cream"

shopping_item4 = "Pizza"

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Dictionaries!

Dictionaries!

Look up
Hello

Get back
A greeting (salutation) said
when meeting someone or
acknowledging someone’s
arrival or presence.

You know dictionaries!
They’re great at looking up thing
by a word, not a position in a list!

Looking it up!

There are lots of
times we want to
look something up!

Phone Book Vending Machine

Competition
registration

Name → Phone number Treat Name → Price

Team Name → List of team members

Looking it up!

Phone Book

Name → Phone number
Key Value

We can use a dictionary for anything with a
key → value pattern!

Dictionaries anatomy!

This is a python dictionary!

This dictionary has Alex, Caitlin and Emma’s phone numbers

phone_book = {"Alex": 111, "Caitlin": 222, "Emma": 333}

Stored in the
variable

phone_book

Has squiggly
brackets

Made up of
pairs of

information

Each pair is
made up of a
key and value

The pairs are
separated by

commas

Keys and values are
separated by a colon

Cups!!

Remember the cups activity from the start of the day?

A Single Cup!

The word “A” can be followed by Any of these words

Key Value

A Single Cup!

The word “A” can be followed by Any of these words

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

We can store the
slips of paper as
a python list!

A Single Cup!

The word “A” can be followed by Any of these words

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

We want to look up
the word “a” and get
back the list!

{'a' : }

A Single Cup!

['house', 'mouse', 'house',
'mouse', 'box', 'fox', 'box',
'fox', 'house', 'mouse']

{'a' : }

So we get a Dictionary with a List value!

If you look up “A” you get back a list of all the
words that can follow “a”

Key Value

Cups → Dictionary with lists!

Here’s what it looks like for a few more cups!

cups = {'am': ['Sam', 'That'],
 'In': ['a', 'a', 'a'],
 'a' : ['house', 'mouse',
 'house', 'mouse',
 'box', 'fox', 'box',
 'fox', 'house',
 'Mouse']

}

You can get the whole cup dictionary from today's
website!

Project time!

You now know all about lists and
dictionaries!

Let’s put what we learnt into our project
Try to do Part 6

 The tutors will be around to help!

More Dictionaries and Lists!

Before we start this lecture

Trying doing Part 0 in your second workbook!

Getting words from sample text

In order to be able to read in lots of text we

need to be able to turn sentences into a list

of words.

We can do this by using .split() on our text!

Using split

text = “a really cool sentence”

words = text.split()

print(words)

What do you think words will be?

Using split

text = “a really cool sentence”

words = text.split()

print(words)

What do you think words will be?

[“a”, “really”, “cool”, “sentence”]

More things you can do with lists!

There’s lots of cool things we can do with lists! Like:

Getting the length of a list

words = [“a”, “really”, “cool”, “sentence”]

print(len(words))

Adding new items to a list
words.append(“yay”)

print(words)

More things you can do with lists!

There’s lots of cool things we can do with lists! Like:

Getting the length of a list

words = [“a”, “really”, “cool”, “sentence”]

print(len(words))

Adding new items to a list
words.append(“yay”)

print(words)

4

More things you can do with lists!

There’s lots of cool things we can do with lists! Like:

Getting the length of a list

words = [“a”, “really”, “cool”, “sentence”]

print(len(words))

Adding new items to a list
words.append(“yay”)

print(words)

4

[“a”, “really”, “cool”, “sentence”, “yay”]

Accessing Lists!

This favourites list holds four strings in order:
faves = ['books', 'butterfly', 'chocolate', 'skateboard']

We can count out the items using index numbers!

0 1 2 3

Remember: Indices start from zero!

Accessing Lists

We access the items in a list with an index such as [0]:
>>> faves[0]
'books'

What code do you need to access the second item in the list?
>>> faves[1]
'butterfly'

0 [1] 2 3

Accessing Lists

We access the items in a list with an index such as [0]:
>>> faves[0]
'books'

What code do you need to access the second item in the list?
>>> faves[1]
'butterfly'

0 [1] 2 3

Going Negative

Negative indices count backwards from the end of the list:
>>> faves[-1]
'skateboard'

What would faves[-2] return?
>>> faves[-2]
'chocolate'

-4 -3 [-2] -1

Going Negative

Negative indices count backwards from the end of the list:
>>> faves[-1]
'skateboard'

What would faves[-2] return?
>>> faves[-2]
'chocolate'

-4 -3 [-2] -1

Falling off the edge

Python complains if you try to go past the end of a list
>>> faves = ['books', 'butterfly', 'chocolate',

'skateboard']
>>> faves[4]

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Updating our dictionaries!

We’ve seen how to use dictionaries - but how do we update
existing ones? Let’s have a look at a phone book example!
>>> phone_book = {
 "Alex": 111, "Caitlin": 222, "Emma": 333
 }

● We met Rowena! Let’s add her to our phone book
 >>> phone_book["Rowena"] = 444
 >>> phone_book
 { "Alex": 123, "Caitlin": 222, "Emma": 333,
 "Rowena": 444 }

Lists in dictionaries!

We’ve been using lists as the values of our dictionary like this:
● Let’s make some sports teams:

>>> team_members = {
"Sydney": ["Pauline", "Srishti", "Amara"],
"Perth": ["Crischell", "Ash", "Taylah"]

}
● What happens if you do:

>>> team_members["Sydney"]

● What if we did this?

>>> team_members["Perth"].append("Priya")

Lists in dictionaries!

We’ve been using lists as the values of our dictionary like this:
● Let’s make some sports teams:

>>> team_members = {
"Sydney": ["Pauline", "Srishti", "Amara"],
"Perth": ["Crischell", "Ash", "Taylah"]

}
● What happens if you do:

>>> team_members["Sydney"]

● What if we did this?

>>> team_members["Perth"].append("Priya")

["Pauline", "Srishti", "Amara"]

Lists in dictionaries!

We’ve been using lists as the values of our dictionary like this:
● Let’s make some sports teams:

>>> team_members = {
"Sydney": ["Pauline", "Srishti", "Amara"],
"Perth": ["Crischell", "Ash", "Taylah"]

}
● What happens if you do:

>>> team_members["Sydney"]

● What if we did this?

>>> team_members["Perth"].append("Priya")

["Pauline", "Srishti", "Amara"]

["Pauline", "Srishti", "Amara", "Priya"]

Project Time!

Now you know even more about
Dictionaries and Lists!

In your second workbook,
Try Parts 1 - 4

The tutors will be around to help!

