
Welcome to GPN

Platinum Sponsor:

Thank you to our Sponsors!

Who are the tutors?

Who are you?

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Today’s Project!

Flappy Bird!

What will the game look like?

http://www.youtube.com/watch?v=6BtQldu9ir8

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given
you a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do some extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Intro to Python

Let’s get coding!

Getting set up

Go to your desktop and open the Flappy bird python
folder

Double click the IDLE(Python GUI).exe file.
(This will download IDLE onto your desktop)

It should look like this

Where do we program? In IDLE

Once it’s downloaded open IDLE.

You should get a screen that looks like this!

Make a mistake!

Type by button mashing the keyboard!
Then press enter!

asdf asdjlkj;pa j;k4uroei

Did you get a big red error message?

Good work you made an error!

● Programmers make A LOT of errors!
● Errors give us hints to find mistakes
● Run your code often to get the hints!!
● Mistakes won’t break computers!

AttributeError:
'NoneType' object
has no attribute
'foo'

TypeE
rror:

 Can'
t

conve
rt 'i

nt' o
bject

to st
r imp

licit
ly

Mistakes are great!
ImportError:

No module

named humour

KeyError:

‘Hairy Potter’

Sy
nt
ax
Er
ro
r:

In
va
li
d
Sy
nt
ax

Adding a comment!

Sometimes we want to write things in code that the
computer doesn’t look at! We use comments for that!

Use comments to write a note or explanation of our code
Comments make code easier for humans to understand

We can make code into a comment if we don’t want it to
run (but don’t want to delete it!)

This code was written by Sheree

print(“Goodbye world!”)

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

It prints the words “hello world” onto the
screen!

No Storing is Boring!

It’s useful to be able to remember things for later!
Computers remember things in "variables"

Variables are like putting things
into a labeled cardboard box.

Let’s make our favourite
number 8 today!

fav_num

8

Variables

Instead of writing the number 8, we can
write fav_num.

fav_num - 6
=> 2

fav_num * 2
=> 16

fav_num + 21
=> 29

fav_num / 2
=> 4

fav_num

Variables

Instead of writing the number 8, we can
write fav_num.

fav_num - 6
=> 2

fav_num * 2
=> 16

fav_num + 21
=> 29

fav_num / 2
=> 4

fav_num

But writing 8 is
much shorter than
writing fav_num???

Variables

Variables are useful
for storing things

that change
(i.e. things that "vary" - hence the

word "variable")

Try changing fav_num to
102. fav_num

102

Variables

We're able to use our code for a new
purpose, without rewriting everything:

fav_num - 6
=> 96

fav_num * 2?
=> 204

fav_num + 21
=> 123

fav_num / 2?
=> 51

fav_num

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

What will this output?

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

My favourite animal is a dog
My favourite animal is a cat
My favourite animal is a catdog

What will this output?

Coding in a file!

Code in a file is code we can run multiple times! Make a reusable “hello
world”!

1. Open a file called “flappy_bird.py” (it’s in your folder)
2. Put your print('hello world') code in it
3. Run your file using the F5 key

Project time!

You now know all about printing and
variables and input!

Let’s put what we learnt into our project
Try to do Part 0

 The tutors will be around to help!

Intro to PyGame Zero

Making it into a game!

What is Pygame Zero?

We use pygame zero to allow our code to do some cool things.

Pygame Zero Setup

The first thing we need to do to use pygame zero is to write this at the top
of your file

>>> import pgzrun

Pygame Zero Setup

The first thing we need to do to use pygame zero is to write this at the top
of your file

>>> import pgzrun

Now to make sure PyGame Zero runs our code we also need another line at
the end of our code

>>> pgzrun.go()

Some Pygame Zero basics

Here’s some of the basics of Pygame Zero that you’ll need for your game.

Screen:

Your main screen for the game will be a screen that pops up whenever you
run your game. You can create a screen by setting its size using the
keywords WIDTH and HEIGHT

1. Try making a 100 x 100 screen and running your file!

The screen should be blank for now

Some Pygame Zero basics

Here’s some of the basics of Pygame Zero that you’ll need for your game.

Screen:

Your main screen for the game will be a screen that pops up whenever you
run your game. You can create a screen by setting its size using the
keywords WIDTH and HEIGHT

1. Try making a 100 x 100 screen and running your file!

>>> WIDTH = 100
>>> HEIGHT = 100

The screen should be blank for now

Project time!

You now know all about the basics of
Pygame Zero!

Let’s put what we learnt into our project
Try to do Part 1

 The tutors will be around to help!

Adding things to our screen!

PyGame Zero images

Images in Pygame zero

Images in Pygame zero are called Actors

This is because you can make them move around and do things like actors
in a play. Pygame zero stores some information about each of the actors in
our game like their position on the screen and what image the actor is.

How to make an actor

To make a new actor and tell Pygame zero what image it is you need to
write the code:

>>> myActor = Actor(“myImage”)

Here the name of our actor is myActor and if we need to change anything
about it we have to use it’s name

How to make an actor

To make a new actor and tell Pygame zero what image it is you need to
write the code:

>>> myActor = Actor(“myImage”)

Here the name of our actor is myActor and if we need to change anything
about it we have to use it’s name

To set our actor’s x and y position you use the code:

>>> myActor.x = 50
>>> myActor.y = 50

Some important code

Pygame zero needs some pretty specific things in order to make our game
work. To do these there are three main functions:

What is a function?

What you need to know about functions:

They are a piece of code that gets run a lot! These functions get run
everytime you say their name.

Functions in blockly

Here are some functions in blockly - maybe they seem familiar from school

Here any code you put in these boxes will get run every time they do

Functions in blockly

This is what the functions can look like with code in it…

We can do the same thing with code!

Some important code

Our special Pygame Zero functions are just like the blocks!

We’ll put our code inside and Pygame Zero will run them to make the game
work!

Getting an actor on screen!

The first function we need in Pygame Zero is the draw() function.The draw()
function tells Pygame Zero what things need to appear on screen.

You can use it to “draw” an actor on the screen by using these lines of code:

>>> def draw():
... myActor.draw()

Changing the actor

The update() function tells Pygame Zero what things need to change so that
it can “animate” the game frame by frame

You can use it to do things like update an actor’s image or x or y
coordinates:

>>> def update():
... myActor.x = myActor.x + 5

The on_mouse_down() function only runs when the player has clicked. This
means that you can make changes to your character when the player clicks
their mouse.

You can use it to do things like change an actor’s image or x or y
coordinates when the player clicks the mouse:

>>> def on_mouse_down():
... myActor.image(“image2”)

When the mouse clicks

Project time!

You now know all about how to put a
character on the screen and how to animate

it!

Let’s put what we learnt into our project
Try to do Part 2

 The tutors will be around to help!

Events and If Statements

Some quick revision

Conditions!

Conditions let us make decision.
First we test if the condition is met!
Then maybe we’ll do the thing

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

That’s the
condition!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

That’s the
condition!

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

True

Put in the
answer to
the question

Is it True that fave_num is less than 10?

● Well, fave_num is 5
● And it’s True that 5 is less than 10
● So it is True!

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

True

What do you think happens?
>>>

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("That’s a small number")

True

What do you think happens?
>>> That’s a small number

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("That’s a small number")

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("That’s a small number")

What do you think happens?
>>> Nothing!

Conditions

How about a different number???

fave_num = 9000
if fave_num < 10:
 print("That’s a small number")

What do you think happens?
>>>

But what if we
want something
different to
happen if the
number is bigger
than 10?

Nothing!

Elif statements

What happens?
>>>

 fav_number = 90
 if fav_number < 10:
 print("That’s a small number")
 else:
 print("That’s a big number")

else
statements

means
something

happens if the
if statement

was False

Elif statements

 fav_number = 90
 if fav_number < 10:
 print("That’s a small number")
 else:
 print("That’s a big number")

else
statements

means
something

happens if the
if statement

was False

What happens?
>>> That’s a big number

Elif statements

 fav_number = 90
 if fav_number < 10:
 print("That’s a small number")
 elif fav_number > 10:
 print("That’s a big number")
 else:
 print("That number is just right!")

What happens?
>>>

elif
statements

means we can
give specific

instructions for
other

scenarios

Elif statements

 fav_number = 90
 if fav_number < 10:
 print("That’s a small number")
 elif fav_number > 10:
 print("That’s a big number")
 else:
 print("That number is just right!")

What happens?
>>> That’s a big number

elif
statements

means we can
give specific

instructions for
other

scenarios

Elif statements

 fav_number = 10
 if fav_number < 10:
 print("That’s a small number")
 elif fav_number > 10:
 print("That’s a big number")
 else:
 print("That number is just right!")

What happens?
>>>

elif
statements

means we can
give specific

instructions for
other

scenarios

How about a different number???

Elif statements

 fav_number = 10
 if fav_number < 10:
 print("That’s a small number")
 elif fav_number > 10:
 print("That’s a big number")
 else:
 print("That number is just right!")

What happens?
>>> That number is just right!

elif
statements

means we can
give specific

instructions for
other

scenarios

How about a different number???

Project Time!

You now know all about if and lists!

See if you can do Part 3

 The tutors will be around to help!

For Loops and Lists

For loops allow you to do something a certain number of
times.

We use them when we know exactly how many times we
want to do something!

For Loops

For Loops

number = 10
for i in range(number):
 #Do something

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)

For Loops

number = 10
for i in range(number):
 #Do something

The for word tells
python we want
to use a loop

This i is a temporary
variable which will
count how many times
we have looped.

This part says we want
to loop number
amount of times (in
this case, 10)The code indented in

the loop is what will
happen every time.

friends = 4
for i in range(friends):
 print(“Hello friend!”)

Looping how many times?

What’s going to happen?

We can loop any number of times:

We can loop any number of times:

We do what’s in the for loop as
many times as what is in the
“range”

friends = 4
for i in range(friends):
 print(“Hello friend!”)

>>> Hello friend!
>>> Hello friend!
>>> Hello friend!
>>> Hello friend!

Looping how many times?

What’s going to happen?

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too!

So much repetition!!

Instead we use a python list!

shopping_item1 = "Bread"

shopping_item2 = "Chocolate"

shopping_item3 = "Ice Cream"

shopping_item4 = "Pizza"

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

You can put (almost) anything into a list

● You can have a list of integers
>>> primes = [1, 2, 3, 5, 11]

● You can have lists with mixed integers and strings
>>> mixture = [1, 'two', 3, 4, 'five']

● But this is almost never a good idea! You should be
able to treat every element of the list the same
way.

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Adding items!

We can also add new items to the list!

What if we decided that we also liked programming?
>>> faves
['books', 'lollipops', 'skateboard']
>>> faves.append('programming')

What does this list look like now?

 ['books', 'lollipops', 'skateboard', 'programming']

Adding items!

We can also add new items to the list!

What if we decided that we also liked programming?
>>> faves
['books', 'lollipops', 'skateboard']
>>> faves.append('programming')

What does this list look like now?

 ['books', 'lollipops', 'skateboard', 'programming']

Looping through lists!

What would we do if we wanted to print out this list, one word at a
time?

What if it had a 100 items??? That would be BORING!

words = ['This', 'is', 'a', 'sentence']

print(words[0])
print(words[1])
print(words[2])
print(words[3])

Looping over a list of ints

We can loop through a list:

numbers = [1, 2, 3, 4]
for i in numbers:
 print(i)

What’s going to happen?

Looping over a list of ints

We can loop through a list:

● Each item of the list takes a turn
at being the variable i

● Do the body once for each item

● We’re done when we run out of
items!

numbers = [1, 2, 3, 4]
for i in numbers:
 print(i)

What’s going to happen?
>>> 1
>>> 2
>>> 3
>>> 4

Looping over a string

Strings are lists of letters!

word = "cat"
for i in word:
 print(i)

What’s going to happen?

Looping over a string

Strings are lists of letters!

word = "cat"
for i in word:
 print(i)

What’s going to happen?
>>> c
>>> a
>>> t

How does it work??

Somehow it knows how to get one fruit out at a time!!

It’s like it knows english!

But fruit is just a variable! We could call it anything! Like dog!

fruits = ['apple', 'banana', 'mango']
for fruit in fruits:
 print('yummy ' + fruit)

fruits = ['apple', 'banana', 'mango']
for dog in fruits:
 print('yummy ' + dog)

>>> Yummy apple

>>> Yummy banana

>>> Yummy mango

Project Time!

Now you know how to use a for loop!

Try to do Part 4 - 5
...if you are up for it!

The tutors will be around to help!

Random!

That’s so random!

There’s lots of things in life that

are up to chance or random!

We want the computer to

be random sometimes!

Python lets us import common

bits of code people use! We’re

going to use the random module!

>>> import random

>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random.choice(shopping_list)

Using the random module

Let’s choose something randomly from a list!

This is like drawing something out of a hat in a raffle!

Try this!

1. Import the random module!

2. Copy the shopping list into IDLE

3. Choose randomly! Try it a few times!

Using the random module

You can also assign your random choice to a variable

>>> import random
>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random_food = random.choice(shopping_list)

>>> print(random_food)

Using the random module

You can also use random to generate a number!

Try this!

1. Copy this code into IDLE
>>> lowest_number = 1

>>> highest_number = 10

>>> random_number = randint(1,10)

2. Choose randomly! Try it a few times!

Using the random module

You can also use random to generate a number!

Try this!

1. Copy this code into IDLE
>>> lowest_number = 1

>>> highest_number = 10

>>> random_number = randint(1,10)

2. Choose randomly! Try it a few times!

It chooses a whole
number between the
first number to the
second number

Project Time!

Raaaaaaaaaandom! Can you handle that?

Let’s try use it in our project!
Try to do Part 6 - 7

 The tutors will be around to

