
Girls’ Programming Network

Flappy Bird!

Tutors Only

| 0



This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney, Canberra and Perth

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers

Amanda Hogan
Isabella Hogan
Renee Noble

A massive thanks to our sponsors for supporting us!

| 1



Part 0: Setting up

Task 0.1: Starting IDLE

On the desktop, open the folder named "Flappy Bird Python".

Double-click the file named "IDLE (Python GUI).exe"

Task 0.2: Opening the file

1. Go to the file menu and select "Open…". This opens a new window.

2. In the menu that appears, select "flappy_bird.py"

Task 0.3: You’ve got a blank space, so write your name!

At the top of the file edit the comment to write your name!
Any line starting with # is a comment.

# This is a comment

Task 0.4: Some scaffolding

Now read through the other comments to see the different steps we'll be doing.

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You should have a file called flappy_bird.py

☐ Your file has your name at the top in a comment

☐ Run your file with F5 key and it does nothing!!

| 2



TUTOR TIPS

The code should look like this:
# <The student's name>
# start modules

# create constants

# print welcome

# make background

# make bird

# make pipes

# draw everything to screen

# draw background

# draw characters

# update everything

# update bird

# update pipes

# bird hits bottom of screen

# bird hits pipes

# moving

# runs everything

| 3



Part 1: Making a game

Task 1.1: Print a welcome and the rules

Welcome the player and print the rules!

Use some print statements to make it happen when you run your code:

Put this under the print welcome comment

Task 1.2: Get Pygame Zero

PygameZero will give us the tools we need to write our game code. Let’s import it!

1. At the top of you file, under the start modules comment, import Pygame Zero

2. At the bottom of your file, under the runs everything comments, make Pygame
Zero GO!

Hint

To import and start Pygame Zero we can use this code:

import pgzrun
...
pgzrun.go()

| 4



Task 1.3: Make a screen

Before we make our game we need to set up the screen to display it on!

1. Make a screen that is 800 pixels wide and 600 pixels tall. This should be under the
create constants comment

2. Run your code! Do you see a big dark box?

Hint

To make a screen that is 100 pixels wide and 200 pixels tall you could use this code

WIDTH = 100
HEIGHT = 200

CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Print a welcome

☐ Print the rules

☐ Shows a dark screen that is the same size as the background image

☐ Try running your code!

TUTOR TIPS

The code should look like this:
# <The student's name>
import pgzrun

# create constants

WIDTH = 800

HEIGHT = 600

# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

| 5



Good luck and have fun!''')

# make background

# make bird

# make pipes

# draw everything to screen

# draw background

# draw characters

# update everything

# update bird

# update pipes

# bird hits bottom of screen

# bird hits pipes

# moving

# runs everything

pgzrun.go()

| 6



Part 2: Images!

Task 2.1: Save all the images!

We need to load all the images that we need for our game!

1. Download the images onto our computer. Go to
https://www.girlsprogramming.network/flappy-bird-images and download all the
images there.

2. Double click on the zip folder to unzip the the folder to get to the images

3. Move the images folder into the “flappy_bird” folder

Task 2.2: Backgrounds are better!!

Let’s start our game by adding the background to the screen! We just downloaded the pic!
We’ll be using a function to draw things to our screen.

1. Under the comment “make background” make a new Actor() called background
with an image of “bg”.

2. Directly under that make it so that the actor’s x value is 400 and y value is 300

3. Create a function call draw()under the draw everything to screen comment

4. Inside your function, draw background to the screen This should be under the
set background image comment.

5. Make sure the code you wrote in Step 4 is indented inside your function.

Hint: How to function!

How do I indent things inside my function?
Use the Tab key to make the parts you want inside your function go inside!

def myFunction():
# this line is indented, it’s part of the function!

# this line is not indented, it isn’t part of the function.

Hint: Make an actor!

To make an actor with an x value of 10 and a y value of 25, it should look like this;

| 7

https://www.girlsprogramming.network/flappy-bird-images


myCharacter = Actor(“characterImage”)
myCharacter.x = 10
myCharacter.y = 25

Hint: Draw an actor!

We can use draw, since we already programmed the x, y position for our background
Actor.

Here’s an example:
myCharacter.draw()

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ Run your code!

☐ Saved all the images to the same place as your code

☐ Made the background appear on the game screen

★ BONUS 2.4: Funky Backgrounds!!

Waiting for the next lecture? Try adding this bonus feature!!

We can use any image as a background! Go on the internet and find another image to use
as a background! Save it in like we did with our flappy bird images, load it and use it
instead of our regular background image

Note: If your new background image is a different size you might need to change the size
of the image to fit the screen.

TUTOR TIPS

The code should look like this:
# <The student's name>
import pgzrun

# create constants

WIDTH = 800

HEIGHT = 600

| 8



# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

Good luck and have fun!''')

# make background

background = Actor("bg")

background.x = 400

background.y = 300

# make bird

# make pipes

# draw everything to screen

def draw():

# draw background

background.draw()

# draw characters

# update everything

# update bird

# update pipes

# bird hits bottom of screen

# bird hits pipes

# moving

# runs everything

pgzrun.go()

| 9



Part 3: The bird is the word!

Task 3.1: Where’s that bird?

This game is meant to be Flappy Bird but there’s no bird on our screen! Let’s fix that.

1. Check that you have the bird image file called bird.png where you saved your
code. This should be in your images folder.

2. Create an Actor using the bird image,
Store it in a variable named bird. Do this after the make bird comment

3. After you make the bird set the x value to be 160 and the y value to be 300

Task 3.2: Show me the bird!

Now we’re ready to add the bird to the screen!

1. Go to your draw function

2. After the draw actors comment, draw your bird.
Make sure this is indented inside your function.

Task 3.3: Make the bird fly

We need to make the bird move downwards on the screen

1. Make a new function called update() after the “updates everything” comment

2. You need to increase the bird’s y value by 1 by adding one to its value under the
updating bird comment

Pygame zero does all the work for looping and frames so don’t worry about that.

Hint

We need to save a new y value to bird. We can do this the same way we originally set it.

e.g.
myCharacter.y = myCharacter.y + 5

| 10



Task 3.4: Falling off the screen

When our bird touches the bottom of the screen it should end the game.

1. Import a new module called sys directly under where you import pgzrun

2. In the update function under the “bird hits bottom of screen” comment you need to
test if the bird’s y value is more than the height of the screen. You will need an if
statement for this.

3. If it is, print “Game Over!” then put the line sys.exit() to immediately stop
the game.

Task 3.5: Moving the bird

Our bird should “flap” upwards when the mouse is clicked.

1. Make a new function called on_mouse_down()after the moving comment

2. Decrease the bird’s y value by 50

CHECKPOINT

If you can tick all of these off you can go to Part 4:
☐ There is a background still on the screen
☐ There is a bird on the screen and its falling
☐ When you click the bird moves back up
☐ Run your code!

★ BONUS 3.6: Funky Bird!

Waiting for the next lecture? Try adding this bonus feature!!

We can use any image as our bird!

1. Go on the internet to find a cool image that you want to be the character of the
game. Must be a jpg,png, or gif

2. Save the image into your images folder

| 11



3. Where you’ve set the bird’s image replace “bird” with the name of your file

Try and make sure the new image is a similar size to the original as otherwise the game
may be too hard

TUTOR TIPS

The code should look like this:
# <The student's name>
import pgzrun

# create constants

WIDTH = 800

HEIGHT = 600

# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

Good luck and have fun!''')

# make background

background = Actor("bg")

background.x = 400

background.y = 300

# make bird

bird = Actor("bird")

bird.x = 160

bird.y = 300

# make pipes

# draw everything to screen

def draw():

# draw background

background.draw()

# draw characters

bird.draw()

| 12



# update everything

def update():

# update bird

bird.y = bird.y + 1

# update pipes

# bird hits bottom of screen

if bird.y > HEIGHT:

print("Game Over!")

sys.exit()

# bird hits pipes

# moving

def update():

bird.y = bird.y - 50

# runs everything

pgzrun.go()

| 13



Part 4: Pipes!
We’ll be using a class for the pipes to make them easier to deal
with an eventually decrease the amount of code

Task 4.1: Make a pipe class

Let’s make a class called Pipes with an initialise function. Don’t pass anything in yet!

This class should be right under the make pipes comment

Hint

To make a class it should look like this:
class myClass():

def __init__(self):

Task 4.2: Initialising it!

To make our pipes we will need some values. Each Pipes object will consist of two pipes -
a top and a bottom. To make these pipes we’ll need some information:

- The shared x value
- The central y value between the pipes
- The constant gap between the pipes

For now let's pass those variables in.

Hint

To pass variables into an init method it should look like:

def __init__(self, parameter1, parameter2, ...):

Task 4.3: Now what?

We now have some pipes but let’s make them “actors” for pyGame to know what to do
with them.

Inside the init method:
1. Make a top and bottom actor using the images “top” and “bottom”.

2. Use the passed in information to set the x and y values for the two actors.

| 14



- The top’s y value is found with the formula:
The centre value - (half the height of the pipes(300) + half the gap)

- The bottom’s y value is found with the formula:
The centre value + half the height of the pipes(300) + half the gap

The top and bottom actors should be accessible by methods of our pipes class the other
values aren’t needed however so do not need to be declared.

Hint

To pass variables into an init method and then declare them it should look like:

def __init__(self,parameter1,parameter2,...):
self.parameter1 = parameter1
...

Task 4.4: Now what pt2.

Now that we have our new class plus some parameters set up, we need to make the
pipes. We’re going to start with three.

They should be made directly under the class. Once created, put each into a pipes list.
- The first pipes should have an x value of 266, and a central value of 400
- The second pipes should have an x value of 532, and a central value of 180
- The third pipe should have an x value of 798, and a central value of 415

The gap between the pipes should be 220.

Hint

To make an instance of an object it looks like this:

myObject1 = myClass(parameter1,parameter2,...)

Task 4.5: Draw those pipes!

In the draw function under the draw actors comment you need to loop though your pipes
list and draw the top and bottom of each to the screen.

Hint: addressing an object’s variables

Remember that to address a value of an object it should look like:

myObject1.parameter1 = 6

| 15



Hint: Looping through a list

To loop through a list you need to do something along the lines of:

for thing in myList:
thing = thing + 5

Task 4.6: Move those pipes!

In the update function under the update pipes comment you need to loop though your pipe
list and decrease the x value of the top and bottom pipes by 1 for each of the pipe groups

Hint: addressing an object’s variables

Remember that to address a value of an object it should look like:
myObject1.parameter1 = 6

Task 4.7: Wrapping around!

Run your code and see what happens.

Once the pipes are off the page they just disappear! To fix this in your update function, in
the loop where the pipes are updated you need to check if their x value is less than -44
and if they are you should set them to 844 so that they “wrap around”

CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ The game has some moving pipes

☐ The program ends when the bird hits the ground

☐ The pipes are random!

☐ A score is being added to and printed when the program ends

TUTOR TIPS

The code should look like this:
# <The student's name>
import pgzrun

import sys

| 16



# create constants

WIDTH = 800

HEIGHT = 600

# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

Good luck and have fun!''')

# make background

background = Actor("bg")

background.x = 400

background.y = 300

# make bird

bird = Actor("bird")

bird.x = 160

bird.y = 300

# make pipes

class Pipes():

def __init__(self, x, y, gap):

self.top = Actor("top")

self.top.x = self.x

self.top.y = self.y - (300 + (gap // 2))

self.bottom = Actor("bottom")

self.bottom.x = self.x

self.bottom.y = self.y + 300 + (gap // 2)

pipes = []

pipes1 = Pipes(266, 400, 220)

pipes2 = Pipes(532, 180, 220)

pipes3 = Pipes(798, 415, 220)

pipes.append(pipes1)

pipes.append(pipes2)

| 17



pipes.append(pipes3)

# draw everything to screen

def draw():

# draw background

background.draw()

# draw characters

bird.draw()

for pipe in pipes:

pipe.top.draw()

pipe.bottom.draw()

# update everything

def update():

# update bird

bird.y = bird.y + 1

# update pipes

for pipe in pipes:

pipe.top.x = pipe.top.x - 1

pipe.bottom.x = pipe.bottom.x - 1

if pipe.top.y < -44:

pipe.top.x = 844

pipe.bottom.x = 844

# bird hits bottom of screen

if bird.y > HEIGHT:

print("Game Over!")

sys.exit()

# bird hits pipes

# moving

def update():

bird.y = bird.y - 50

# runs everything

pgzrun.go()

| 18



Part 5: Game Over!

Task 5.1: Colliding!

Now our bird goes up and down and our pipes move right to left. We need to make some
collisions! We need to check every pipe to see if the bird is hitting it. For now let’s quit the
program when the character dies.

Remember you'll need to check the top and bottom of each Pipes object.

Hint

To check if one actor has collided with another in pygame zero it looks like this:

if myObject1.colliderect(myObject2):
print(“Hit!”)

Task 5.2: Points!

You need to make a variable in your create constants section that will store a score. Then
every time a set of two pipes “falls” off the edge of the screen you should give the player a
point. For now you can just print the score before every line that says sys.exit()

Hint

To make a variable global you need to write this at the top of a function

global myVariable

Task 5.3: Creating game over!

Now that we are detecting when the bird hits a pipe we need to make a global gameOver
flag (True or False) that starts at False but is switched to True when the bird collides with a
pipe or the bottom of the screen.

We’ll need this to change our display to show they lost. You will also need to change your
update function so that it only updates if the game isn’t over

Hint: Making a Boolean

To set up the flag or boolean variable.

myFlag = True

| 19



Task 5.4: Now what?

Now that we are detecting when the game is over we need to change the screen when it
is. First we’ll start with a background fill. You can choose any colour for this. (Use google
to find different colours in rgb format)

Hint

To fill the screen with a colour it should look like:

screen.fill((0,0,0)) ← this is RGB colouring so it will display black

Task 5.5: Some text

The next step of our game over screen is to tell the player that it is game over. To do this
we’ll be displaying some text on the screen, including“Game Over!” and their score.

Hint

To draw some text on the screen it should look like this:

screen.draw.text("Some Text", center = (400,300), fontsize = 60)

Task 5.6: Random pipes!

Right now the pipes are staying at the same y values every time they loop so let’s use
some random numbers to fix that.

Now instead of passing in the initial centre y value and gap we’ll make them with the
random module.

1. First you need to import the random module under where you’ve imported sys and
pgzrun. This needs to be a from [module] import * import.

2. Inside your __init__ function above everything else, you need to generate a
random gap value. This needs to be between 160 and 260.

3. Nest instead of passing in a centre y value you need to generate one between a
minimum and maximum.

Minimum: -250 + half the height of the pipes(300) + half the generated gap
Maximum: 850 - (half the height of the pipes(300) + half the generated gap)

Make sure you use // to halve the gap, otherwise it might crash.

4. Now you need to change your top and bottom pipes’ y values to use these values
and stop passing the constant ones in.

| 20



5. You also need to make sure that you’re doing this when the pipes wrap around so
they get a new random y value

Hint

To generate a random integer between two given numbers it should look like:

randint(50,60)

Remember to import random at the top of the page!

CHECKPOINT

If you can tick all of these off you can go to Part 6:
☐ Your game ends after the bird collides with the wall or pipes

☐ Your game displays a game over screen

★ BONUS 5.7: Score on screen

Waiting for the next lecture? Try adding this bonus feature!!

We are storing a score. Now we can try to display the score on the screen during the
game play in order to know how many points we’re getting. The code should look
something like:

screen.draw.text(f"My Number is:
{myNum}",topleft=(0,0),color=(0,0,0), fontsize = 30)

★ BONUS 5.8: Interesting fonts!

Waiting for the next lecture? Try adding this bonus feature!!

We have some basic text on a screen to show that the game is over, but now you can
make it your own. Feel free to add your own images off the internet. You can also play
around with the text styling. A good resource to help with that is the website;
https://pygame-zero.readthedocs.io/en/stable/ptext.html

TUTOR TIPS

The code should look like this:

| 21

https://pygame-zero.readthedocs.io/en/stable/ptext.html


# <The student's name>
import pgzrun

import sys

from random import *

# create constants

WIDTH = 800

HEIGHT = 600

score = 0

gameOver = False

# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

Good luck and have fun!''')

# make background

background = Actor("bg")

background.x = 400

background.y = 300

# make bird

bird = Actor("bird")

bird.x = 160

bird.y = 300

# make pipes

class Pipes():

def __init__(self, x):

gap = randint(160,260)

y = randint((300-250+(gap//2)),(850-300-(gap//2)))

self.top = Actor("top")

self.top.x = x

self.top.y = y - (300 + (gap // 2))

self.bottom = Actor("bottom")

self.bottom.x = x

self.bottom.y = y + 300 + (gap // 2)

pipes = []

pipes1 = Pipes(266)

pipes2 = Pipes(532)

pipes3 = Pipes(798)

pipes.append(pipes1)

pipes.append(pipes2)

pipes.append(pipes3)

# draw everything to screen

def draw():

if gameOver == True:

screen.fill((0,0,0))

screen.draw.text(f"Game Over!\n Your score was {score}", center = (400,300), fontsize = 60)

| 22



else:

# draw background

background.draw()

# draw characters

bird.draw()

for pipe in pipes:

pipe.top.draw()

pipe.bottom.draw()

# update everything

def update():

global score, gameOver

if gameOver == False:

# update bird

bird.y = bird.y + 1

# update pipes

for pipe in pipes:

pipe.top.x = pipe.top.x - 1

pipe.bottom.x = pipe.bottom.x - 1

if pipe.top.y < -44:

pipe.top.x = 844

pipe.bottom.x = 844

gap = randint(160,260)

y = randint((300-250+(gap//2)),(850-300-(gap//2)))

pipe.top.y = y - (300 + (gap//2))

pipe.bottom.y = y + 300 + (gap//2)

score = score + 1

# bird hits bottom of screen

if bird.y > HEIGHT:

print("Game Over!")

print(f"Your score was: {score}")

gameOver = True

# bird hits pipes

for pipe in pipes:

if bird.colliderect(pipe.top) or bird.colliderect(pipe.bottom):

print("Game Over!")

print(f"Your score was: {score}")

gameOver = True

# moving

def update():

bird.y = bird.y - 50

# runs everything

pgzrun.go()

| 23



Part 6: Make some methods!
We’re going to improve our class by using methods to cut down on
the repetition required for updating and drawing our pipes.

Task 6.1: Making an update method!

We want to make an update method that updates both pipes in our pipeGroup objects.

We’ll start by making the method function and then we’ll copy across the needed code.
However, since pygame zero has specific functions that it uses differently than normal we
can’t call our method just “update()” instead call it something like updatePipes()

Hint

Much like a normal function to create a new method it looks like this:

def myMethod(self,parameter1,...):

Task 6.2: Implementing the method!

Now you need to go back to where you originally updated the pipes. Use this code as a
basis to your method.
The method should change the x values of its top and bottom actors by 1. It should wrap
the pipe around when it moves off screen. When it wraps around it should generate new y
and gap values. It should take in “bird" as a parameter and detect whether it has collided
with either pipe, changing gameOver when necessary.

Once this is added to the method you will have to change your original function to just call
this method for each object (you can use a loop here)

Task 6.3: Making a draw method!

This method needs to draw both the top and bottom pipes of the group to the screen.
Once this is created you should replace your original draw code to call this method for
each object.

Remember that because of Pygame zero having specific function names this method
should be called something other than draw()

| 24



CHECKPOINT

If you can tick all of these off you can go to some extensions
or other bonuses:
☐ You have a pipe class that has methods

☐ You are updating the values and displaying the objects and the
gameplay still works
☐ You have a working game!

TUTOR TIPS

The code should look like this:
# <The student's name>
import pgzrun

import sys

from random import *

# create constants

WIDTH = 800

HEIGHT = 600

score = 0

gameOver = False

# print welcome

print('''The game is about to start!

Click the mouse to "flap" upwards

Dodge the pipes and the floor

Good luck and have fun!''')

# make background

background = Actor("bg")

background.x = 400

background.y = 300

# make bird

bird = Actor("bird")

bird.x = 160

bird.y = 300

# make pipes

class Pipes():

| 25



def __init__(self, x):

gap = randint(160,260)

y = randint((300-250+(gap//2)),(850-300-(gap//2)))

self.top = Actor("top")

self.top.x = x

self.top.y = y - (300 + (gap // 2))

self.bottom = Actor("bottom")

self.bottom.x = x

self.bottom.y = y + 300 + (gap // 2)

def updatePipes(self,bird):

global score, gameOver

self.top.x = self.top.x - 1

self.bottom.x = self.bottom.x - 1

if self.top.x < -44:

self.top.x = 844

self.bottom.x = 844

gap = randint(160,260)

y = randint((300-250+(gap//2)),(850-300-(gap//2)))

self.top.y = y - (300 + (gap//2))

self.bottom.y = y + 300 + (gap//2)

score = score + 1

if bird.colliderect(self.top) or bird.colliderect(self.bottom):

print("Game Over!")

print(f"Your score was {score}")

gameOver = True

def drawPipes(self):

self.top.draw()

self.bottom.draw()

pipes = []

pipes1 = Pipes(266)

pipes2 = Pipes(532)

pipes3 = Pipes(798)

pipes.append(pipes1)

pipes.append(pipes2)

pipes.append(pipes3)

# draw everything to screen

def draw():

if gameOver == True:

screen.fill((0,0,0))

| 26



screen.draw.text(f"Game Over!\n Your score was {score}", center = (400,300),

fontsize = 60)

else:

# draw background

background.draw()

# draw characters

bird.draw()

for pipe in pipes:

pipe.drawPipes()

# update everything

def update():

global score, gameOver

if gameOver == False:

# update bird

bird.y = bird.y + 1

# update pipes

for pipe in pipes:

pipe.updatePipes(bird)

# bird hits bottom of screen

if bird.y > HEIGHT:

print("Game Over!")

print(f"Your score was: {score}")

gameOver = True

# moving

def on_mouse_down():

bird.y = bird.y - 50

# runs everything

pgzrun.go()

| 27


