
Welcome to GPN

Platinum Sponsor:

Thank you to our Sponsors!

Who are the tutors?

Who are you?

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

You can see:

● These slides (to take a look back or go on ahead).
● A digital copy of your workbook.
● Help bits of text you can copy and paste!

There’s also links to places where you can do more programming!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Today’s Project!

Flappy Bird!

What will the game look like?

http://www.youtube.com/watch?v=6BtQldu9ir8

Using the workbook!

The workbooks will help you put your project together!

Each Part of the workbook is made of tasks!

Task 6.1: Make the thing do blah!

Make your project do blah ….

Hint

A clue, an example or some extra information to help you
figure out the answer.

Task 6.2: Add a blah to your code!

This has instructions on how to do a part of the project

1. Start by doing this part
2. Then you can do this part

Tasks - The parts of your project

Follow the tasks in order to make the
project!

Hints - Helpers for your tasks!

Stuck on a task, we might have given
you a hint to help you figure it out!

The hints have unrelated examples, or
tips. Don’t copy and paste in the code,
you’ll end up with something CRAZY!

Using the workbook!

The workbooks will help you put your project together!

Check off before you move on from a Part! Do some bonuses while you wait!

★ BONUS 4.3: Do some extra!

Something to try if you have spare time before the next
lecture!

Checklist - Am I done yet?

Make sure you can tick off every box in this
section before you go to the next Part.

Lecture Markers
This tells you you’ll find out how to do
things for this section during the names
lecture.

 CHECKPOINT

If you can tick all of these off you’re ready to
move the next part!
☐ Your program does blah
☐ Your program does blob

Bonus Activities
Stuck waiting at a lecture marker?
Try a purple bonus. They add extra
functionality to your project along the way.

Intro to Python

Let’s get coding!

Getting set up

Go to your desktop and open the Flappy bird python
folder

Double click the IDLE(Python GUI).exe file.
(This will download IDLE onto your desktop)

It should look like this

Where do we program? In IDLE

Once it’s downloaded open IDLE.

You should get a screen that looks like this!

Make a mistake!

Type by button mashing the keyboard!
Then press enter!

asdf asdjlkj;pa j;k4uroei

Did you get a big red error message?

Good work you made an error!

● Programmers make A LOT of errors!
● Errors give us hints to find mistakes
● Run your code often to get the hints!!
● Mistakes won’t break computers!

AttributeError:
'NoneType' object
has no attribute
'foo'

TypeE
rror:

 Can'
t

conve
rt 'i

nt' o
bject

to st
r imp

licit
ly

Mistakes are great!
ImportError:

No module

named humour

KeyError:

‘Hairy Potter’

Sy
nt
ax
Er
ro
r:

In
va
li
d
Sy
nt
ax

Adding a comment!

Sometimes we want to write things in code that the
computer doesn’t look at! We use comments for that!

Use comments to write a note or explanation of our code
Comments make code easier for humans to understand

We can make code into a comment if we don’t want it to
run (but don’t want to delete it!)

This code was written by Sheree

print(“Goodbye world!”)

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

Write some code!!

This is the first bit of code we will do. What do you
think it does?

print('hello world')

It prints the words “hello world” onto the
screen!

Storing information
We can store information in variables:

They can help us remember things for later… especially
when those things end up changing

animal = "dog"
print("My favourite animal is a " + animal)

>>> My favourite animal is a dog

Variables are like putting things
into a labeled cardboard box.

animal

dog

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

What will this output?

Reusing variables
We can replace values in variables:

animal = "dog"
print("My favourite animal is a " + animal)
animal = "cat"
print("My favourite animal is a " + animal)
animal = animal + "dog"
print("My favourite animal is a " + animal)

My favourite animal is a dog
My favourite animal is a cat
My favourite animal is a catdog

What will this output?

Coding in a file!

Code in a file is code we can run multiple times! Make a reusable “hello
world”!

1. Open a file called “flappy_bird.py” (it’s in your folder)
2. Put your print('hello world') code in it
3. Run your file using the F5 key

Project time!

You now know all about printing and
variables and input!

Let’s put what we learnt into our project
Try to do Part 0

 The tutors will be around to help!

Intro to PyGame Zero

Making it into a game!

What is Pygame Zero?

Pygame zero is a bit of extra code we add on to our regular python to
“teach” it how to do some new things like drawing images other things to
make a game like playing sounds.

Pygame Zero Setup

The first thing we need to do is to “import” pygame zero. This tells idle that
it should be working with pygame zero to run your code.

To do that we need to write something like this in your file.

>>> import pgzrun

Pygame Zero Setup

The first thing we need to do is to “import” pygame zero. This tells idle that
it should be working with pygame zero to run your code.

To do that we need to write something like this in your file.

>>> import pgzrun

Now to make sure PyGame Zero runs our code we also need another line at
the end of our code

>>> pgzrun.go()

Some Pygame Zero basics

Here’s some of the basics of Pygame Zero that you’ll need for your game.

Screen:

Your main screen for the game will be a screen that pops up whenever you
run your game. You can create a screen by setting its size using the
keywords WIDTH and HEIGHT

1. Try making a 100 x 100 screen and running your file!

The screen should be blank for now

Some Pygame Zero basics

Here’s some of the basics of Pygame Zero that you’ll need for your game.

Screen:

Your main screen for the game will be a screen that pops up whenever you
run your game. You can create a screen by setting its size using the
keywords WIDTH and HEIGHT

1. Try making a 100 x 100 screen and running your file!

>>> WIDTH = 100
>>> HEIGHT = 100

The screen should be blank for now

Project time!

You now know all about the basics of
Pygame Zero!

Let’s put what we learnt into our project
Try to do Part 1

 The tutors will be around to help!

Adding things to our screen!

PyGame Zero images

Images in Pygame zero

Images in Pygame zero are called Actors

This is because you can make them move around and do things like actors
in a play. Pygame zero stores some information about each of the actors in
our game like their position on the screen and what image the actor is.

How to make an actor

To make a new actor and tell Pygame zero what image it is you need to
write the code:

>>> myActor = Actor(“myImage”)

Here the name of our actor is myActor and if we need to change anything
about it we have to use it’s name

How to make an actor

To make a new actor and tell Pygame zero what image it is you need to
write the code:

>>> myActor = Actor(“myImage”)

Here the name of our actor is myActor and if we need to change anything
about it we have to use it’s name

To set our actor’s x and y position you use the code:

>>> myActor.x = 50
>>> myActor.y = 50

Getting an actor on screen!

Pygame zero needs some pretty specific things in order to make our game
work. To do these there are three main functions:

What are functions?

Functions are like factories!

Running a factory doesn’t mean doing all the work
yourself, you can get other factories to help you out!

Your main factory!

Timber Mill

Metal Worker

Cupcake factory

What are functions?

Functions are like factories!

Asking other factories to do some work for you makes
your main task simper. You can focus on the
assembly!

Your main factory!I’d like to place an
order for a piece
of wood. 2 meters
by 1.5 meters.

Sure thing!
Coming
right away!

Order

Delivery

Order

Delivery

Can I order 4
metal poles
please! 80cm
long.

Timber Mill

Cupcake factory

Metal Worker

It will be
delivered
straight
away!

What are functions?

Functions are like factories!
Your main factory!

Timber Mill

Metal Worker

Cupcake factory

Look at this beautiful
table I made!

Outsourcing made it
simple!

Some important code

Pygame zero needs some pretty specific things in order to make our game
work. To do these there are three main functions:

What is a function?

What you need to know about functions:

They are a piece of code that gets run a lot! These functions get run
everytime you say their name.

Functions in blockly

Here are some functions in blockly - maybe they seem familiar from school

Here any code you put in these boxes will get run every time they do

Functions in blockly

This is what the functions can look like with code in it…

We can do the same thing with code!

Some important code

Our special Pygame Zero functions are just like the blocks!

We’ll put our code inside and Pygame Zero will run them to make the game
work!

Getting an actor on screen!

The first function we need in Pygame Zero is the draw() function.The draw()
function tells Pygame Zero what things need to appear on screen.

You can use it to “draw” an actor on the screen by using these lines of code:

>>> def draw():
... myActor.draw()

Changing the actor

The update() function tells Pygame Zero what things need to change so that
it can “animate” the game frame by frame

You can use it to do things like update an actor’s image or x or y
coordinates:

>>> def update():
... myActor.x = myActor.x + 5

The on_mouse_down() function only runs when the player has clicked. This
means that you can make changes to your character when the player clicks
their mouse.

You can use it to do things like change an actor’s image or x or y
coordinates when the player clicks the mouse:

>>> def on_mouse_down():
... myActor.image(“image2”)

When the mouse clicks

Project time!

You now know all about how to put a
character on the screen and how to animate

it!

Let’s put what we learnt into our project
Try to do Part 2

 The tutors will be around to help!

If Statements and Lists

Some quick revision

Conditions!

Conditions let us make decision.
First we test if the condition is met!
Then maybe we’ll do the thing

If it’s raining take an umbrella

Yep it’s raining

…... take an umbrella

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>>

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>> that’s a small number

Conditions

So to know whether to do something, they find out if it’s True!

fave_num = 5
if fave_num < 10:
 print("that’s a small number")

What do you think happens?
>>> that’s a small number

But what if we
want something
different to
happen if the
number is bigger
than 10?

Elif statements

fav_number = 10
if fav_number < 10:
 print("That is a small number")
elif fav_number > 10:
 print("That is a big number!")
else:
 print("That number is just right!")

What happens?

elif
Means we can
give specific

instructions for
other scenarios

else
statements

means
something still
happens if the
if statement

was False

Elif statements

fav_number = 10
if fav_number < 10:
 print("That is a small number")
elif fav_number > 10:
 print("That is a big number!")
else:
 print("That number is just right!")

What happens?
>>> That number is just right!

elif
Means we can
give specific

instructions for
other scenarios

else
statements

means
something still
happens if the
if statement

was False

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too
>>> shopping_item1 = "Bread"
>>> shopping_item2 = "Chocolate"
>>> shopping_item3 = "Ice Cream"
>>> shopping_item4 = "Pizza"

So much repetition!

Instead we use a python list!
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream",
"Pizza"]

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Project Time!

You now know all about if and lists!

See if you can do Part 3

 The tutors will be around to help!

Classes

Classes and Objects

What is a ‘class’?

A class is a group of things that have similar characteristics and behaviour. It’s used
in lots of different games to allow characters to behave the same while still being
different and having different attributes. One “instance” or one occurrence of a class
is called an object

For example let’s think of Pokemon

class Pokemon:

Name of the
class or group
of things

Our example…

There are many different types of pokemon but they all have similar behaviours and
general statistics. For example each pokemon has a type, attacks, and
weaknesses. The specifics of these vary with each pokemon but on a general level
this is what makes them part of a class as they have similar characteristics and
behaviours.

Why do we use them?

For our example let’s focus on Bulbasaur!

What are some things we know about
bulbasaur?

Name: Bulbasaur
Type: Grass/Poison
Attacks: Tackle, Vine whip, Growth, etc.
Weaknesses: Fire, Ice, Flying, Psychic

Making a class

Let’s make an example class using this information

class Pokemon:

def __init__(self, name, type, attacks, weaknesses):
self.name = name
self.type = type
self.attacks = attacks
self.weaknesses = weaknesses
print(‘A new pokemon has been created’)

Declaring its
properties

This is printed whenever a new pokemon object is
made.

Making an object

Now let’s make a bulbasaur object...

class Pokemon:

def __init__(self, name, type, attacks, weaknesses):
self.name = name
self.type = type
self.attacks = attacks
self.weaknesses = weaknesses
print(‘A new pokemon has been created’)

name = “Bulbasaur”
type = “Grass/Poison”
attacks = [“Tackle”,”Vine Whip”,”Growth”,...]
weaknesses = [“Fire”,”Ice”,”Flying”,”Psychic”]
Bulbasaur = Pokemon(name, type, attacks, weaknesses)

Methods

Right now our pokemon don’t do anything so let’s fix that. A class can have specific
behaviours or “methods” attached to it. These are functions that can only be
performed by the class. However, this means that every object in a class has these
same “behaviours”. So let’s make some behaviors for our Pokemon

def evolve(self, new_name):
print(f“Congratulations, your {self.name}

has now evolved to a {new_name}”)
self.name = new_name

def attack(self):
attack = attacks[0]
print(f”{self.name} performs move {attack}”)

Methods

Methods

Let’s test out these new behaviours with our bulbasaur

def evolve(self, new_name):
print(f“Congratulations, your {self.name} has now

evolved to a {new_name}”)
self.name = new_name

def attack(self):
attack = attacks[0]
print(f”{self.name} performs move {attack}”)

Bulbasaur.attack()

What happens?
>>>

Methods

Let’s test out these new behaviours with our bulbasaur

def evolve(self, new_name):
print(f“Congratulations, your {self.name} has now

evolved to a {new_name}”)
self.name = new_name

def attack(self):
attack = attacks[0]
print(f”{self.name} performs move {attack}”)

Bulbasaur.attack()

What happens?
>>> Bulbasaur performs move Tackle

Methods

Let’s test out these new behaviours with our bulbasaur

def evolve(self, new_name):
print(f“Congratulations, your {self.name} has now

evolved to a {new_name}”)
self.name = new_name

def attack(self):
attack = attacks[0]
print(f”{self.name} performs move {attack}”)

Bulbasaur.evolve(“Ivysaur”)

What happens?
>>>

Methods

Let’s test out these new behaviours with our bulbasaur

def evolve(self, new_name):
print(f“Congratulations, your {self.name} has now

evolved to a {new_name}”)
self.name = new_name

def attack(self):
attack = attacks[0]
print(f”{self.name} performs move {attack}”)

Bulbasaur.evolve(“Ivysaur”)

What happens?
>>> Congratulations, your Bulbasaur has now
evolved to a Ivysaur

Attribute values

Now that we know the basics of what a class is and what it can do we have one more
thing to cover… Attributes

Remember when we created the class it had some weird things at the beginning like
self.name self.type etc? Well we can actually find out the value of these variables
from outside the class by using the object’s name instead of self. Let’s look at some
examples:

1. print(Bulbasaur.name)
>>>

2. print(Bulbasaur.type)
>>>

Attribute values

Now that we know the basics of what a class is and what it can do we have one more
thing to cover… Attributes

Remember when we created the class it had some weird things at the beginning like
self.name self.type etc? Well we can actually find out the value of these variables
from outside the class by using the object’s name instead of self. Let’s look at some
examples:

1. print(Bulbasaur.name)
>>> Bulbasaur

2. print(Bulbasaur.type)
>>>

Attribute values

Now that we know the basics of what a class is and what it can do we have one more
thing to cover… Attributes

Remember when we created the class it had some weird things at the beginning like
self.name self.type etc? Well we can actually find out the value of these variables
from outside the class by using the object’s name instead of self. Let’s look at some
examples:

1. print(Bulbasaur.name)
>>> Bulbasaur

2. print(Bulbasaur.type)
>>> Grass/Poison

Project time!

You now know all about classes

Let’s put what we learnt into our project
Try to do Part 4

 The tutors will be around to help!

Random!

That’s so random!

There’s lots of things in life that

are up to chance or random!

We want the computer to

be random sometimes!

Python lets us import common

bits of code people use! We’re

going to use the random module!

>>> import random

>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random.choice(shopping_list)

Using the random module

Let’s choose something randomly from a list!

This is like drawing something out of a hat in a raffle!

Try this!

1. Import the random module!

2. Copy the shopping list into IDLE

3. Choose randomly! Try it a few times!

Using the random module

You can also assign your random choice to a variable

>>> import random
>>> shopping_list = ["eggs", "bread", "apples", "milk"]

>>> random_food = random.choice(shopping_list)

>>> print(random_food)

Using the random module

You can also use random to generate a number!

Try this!

1. Copy this code into IDLE
>>> lowest_number = 1

>>> highest_number = 10

>>> random_number = randint(1,10)

2. Choose randomly! Try it a few times!

Using the random module

You can also use random to generate a number!

Try this!

1. Copy this code into IDLE
>>> lowest_number = 1

>>> highest_number = 10

>>> random_number = randint(1,10)

2. Choose randomly! Try it a few times!

It chooses a whole
number between the
first number to the
second number

Project Time!

Raaaaaaaaaandom! Can you handle that?

Let’s try use it in our project!
Try to do Part 5

 The tutors will be around to

