

Girls’ Programming Network

Cryptography
N

Create a Caesar and Vigenère Cipher Cracker!

TUTORS ONLY

Part 1: The English Dictionary

Full code Lesson 1

The code should look like this (no bonuses):

dictionary = set()
with open("dictionary.txt") as f:
 for line in f:
 dictionary.add(line.strip())

Part 2: Counting Words

TUTOR TIPS

Make sure students test their individual functions as they go.

Here you could get them to add lines like these to see if it counts only real english words:
print(count_english("i like pie")) >> prints 3
print(count_english("i dont like glarble")) >> prints 3 (if used “I”
and “don’t” would print 1

Full code Lesson 2

They should have a function that looks like this:
def count_english(text):
 words = text.split()
 counter = 0
 for word in words:
 if word in dictionary:
 counter = counter + 1
 return counter

 | 1

Part 3: Time to crack!
TUTOR TIPS

They should have a function that looks like this:

Previously we needed to encrypt and decrypt. But now we only need to decrypt.

Students can either use their same code from before and fix to always be in decrypt mode

def caesar_decrypt(message, key):
 mode = "d"
 if mode == "d":
 key = -1 * key
 new_message = ""
 for current_letter in message:
 …

Or they can remove the unnecessary if statement to clean up their code

def caesar_decrypt(message, key):
 key = key * -1
 new_message = ""
 for current_letter in message:
 …

TUTOR TIPS

They should have a function that looks like this:

At the top of the file
alphabet = "abcdefghijklmnopqrstuvwxyz"

...

Anywhere in the file
def caesar_decrypt(message, key):
 key = key * -1
 new_message = ""
 for current_letter in message:
 if current_letter in alphabet:
 current_index = alphabet.index(current_letter)
 new_index = (current_index + key) % 26
 new_letter = alphabet[new_index]
 new_message = new_message + new_letter
 else:
 new_message = new_message + current_letter
 return new_message

 | 2

Part 4: Which is the best key?

 TUTOR TIPS

 Looking for this logic to track the best key:
decrypted_text = caesar_decrypt(message, key)
count = count_english(decrypted_text)
if count > best_count:
 best_key = key
 best_count = count

Task 4.4: Return the best key!

TUTOR TIPS

In theory we could have kept track of the best decrypted message too, but we’ve
separated that out just for the flow of the workbook. But students can make changes to
make this into a function that returns the best decryption, rather than just the best key.

Task 4.5: Test your function!

TUTOR TIPS

Get students to use their caesar ciphers to create their own test cases.
For instance they could do this:
find_best_key("khoor zruog")

Hopefully it will return a key of 3. (It translates to hello world)

Full code Lesson 4

They should have a function that looks like this:
def find_best_key(message):
 best_key = 0
 best_count = 0
 for key in range(26):
 decrypted_text = caesar_decrypt(message, key)
 count = count_english(decrypted_text)
 if count > best_count:
 best_key = key
 best_count = count
 return best_key

 | 3

Part 5: Putting it all together

Task 5.5: Calling your main function

TUTOR TIPS

The line they are most likely to forget is this one:

main()

Which will mean their code doesn't run anything, because we just have function
definitions.

TUTOR TIPS

They should have a function that looks like this:

def main():
 with open("message.txt") as f:
 message = f.read().strip()
 key = find_best_key(message)
 decrypted_text = caesar_decrypt(message, key)
 print(decrypted_text)

main()

 | 4

Complete Code looks like:

TUTOR TIPS

The code should look like this:
alphabet = "abcdefghijklmnopqrstuvwxyz"

dictionary = set()
with open("dictionary.txt") as f:
 for line in f:
 dictionary.add(line.strip())

def count_english(text):
 words = text.split()
 counter = 0
 for word in words:
 if word in dictionary:
 counter = counter + 1
 return counter

def find_best_key(message):
 best_key = 0
 best_count = 0
 for key in range(26):
 decrypted_text = caesar_decrypt(message, key)
 count = count_english(decrypted_text)
 if count > best_count:
 best_key = key
 best_count = count
 return best_key

def caesar_decrypt(message, key):
 key = key * -1
 new_message = ""
 for current_letter in message:
 if current_letter in alphabet:
 current_index = alphabet.index(current_letter)
 new_index = (current_index + key) % 26
 new_letter = alphabet[new_index]
 new_message = new_message + new_letter
 else:
 new_message = new_message + current_letter
 return new_message

def main():
 with open("message.txt") as f:
 message = f.read().strip()
 key = find_best_key(message)
 decrypted_text = caesar_decrypt(message, key)
 print(decrypted_text)

main()

 | 5

Part 6: Extension: Vigenère Cracker
Solution

alphabet = "abcdefghijklmnopqrstuvwxyz"

keywords = []
with open("keys.txt") as f:
 for line in f:
 keywords.append(line.strip())

dictionary = set()
with open("dictionary.txt") as f:
 for line in f:
 dictionary.add(line.strip())

def count_english(text):
 words = text.split()
 counter = 0
 for word in words:
 if word in dictionary:
 counter = counter + 1
 return counter

def find_best_key(message):
 best_key = 0
 best_count = 0
 for key in keywords:
 print(key)
 decrypted_text = vigenere_decrypt(message, key)
 count = count_english(decrypted_text)
 if count > best_count:
 best_key = key
 best_count = count
 print(decrypted_text)
 return best_key

def caesar_letter(letter, key_num):
 current_index = alphabet.index(letter)
 new_index = (current_index + key_num) % 26
 new_letter = alphabet[new_index]
 return new_letter

def vigenere_decrypt(message, key):
 key_nums = []
 for letter in key:
 key_num = alphabet.index(letter)
 key_num = -1 * key_num
 key_nums.append(key_num)

 new_message = ""
 count = 0
 for current_letter in message:
 if current_letter in alphabet:
 key_num = key_nums[count % len(key_nums)]
 new_letter = caesar_letter(current_letter, key_num)
 new_message = new_message + new_letter
 count = count + 1
 else:
 new_message = new_message + current_letter
 return new_message

def main():
 with open("message_vigenere.txt") as f:
 message = f.read().strip()

 key = find_best_key(message)
 decrypted_text = vigenere_decrypt(message, key)
 print("best", key)
 print(decrypted_text)

main()

 | 6

	
	
	Girls’ Programming Network
	CryptographyN
	TUTORS ONLY
	Part 1: The English Dictionary
	Part 2: Counting Words
	
	Part 3: Time to crack!
	Task 4.4: Return the best key!
	Task 4.5: Test your function!

	
	Task 5.5: Calling your main function

