
Welcome to the Labs

Cryptography!

Welcome to the labs!

Thank you to our Sponsors!

Platinum Sponsor:

Gold Sponsor:

Who are the tutors?

Who are you?

Two Truths and a Lie

1. Get in a group of 3-5
people

2. Tell them three things
about yourself:
a. Two of these things

should be true
b. One of these things

should be a lie!
3. The other group members

have to guess which is the
lie

Log on

Log on and jump on the GPN website
girlsprogramming.network/workshop

You can see:

● These slides (to take a look back on or go on ahead).
● A link to the EdStem course
● Helpful bits of text you can copy and paste!

Tell us you’re here!

Click on the
Start of Day Survey

and fill it in now!

Introduction to Edstem

Signing up to Edstem

We are shifting all our courses to a new website called “Edstem” so here’s an
overview of how to sign up and how to use it.

First let’s go through how to create an account.

1. Follow this link: https://edstem.org/au/join/qKyppB
2. Type in your name and your personal email address
3. Click Create Account
4. Go to your email to verify your account
5. Create a password
6. It should then take you to the courses home page.
7. Click on the one we will be using for this project:

If you don’t have access to your email account, ask a tutor for a GPN edStem login

https://edstem.org/au/join/qKyppB

Getting to the lessons

1. Once you are in the course, you’ll be taken to a discussion page.
2. Click the button for the lessons page (top right - looks like a

book)

The set up of the workbook

The main page:

● Heading at the top that tells you the project you are in

● List of “Chapters” - They have an icon that looks like this:

● To complete your project, work through the chapters one at a time

Inside a Chapter

Inside a chapter there are two main types of pages:

1. Lessons - where you will do your coding.

They have this icon:

2. Checkpoints

Each chapter has a checkpoint to complete to move to the next
chapter. Make sure you scroll down to see all the questions in a
checkpoint.

How to do the work

In each lesson there is:

1. A section on the left with instructions
2. A section on the right for your code

You will need to copy your code from the last lesson, then follow the
instructions to change your code

There are also
Hints and
Code Blocks to
help you

Running your code…

Don’t worry if you
forget. Tutors

will help!

1. Open the Terminal window below your code

2. Click button that says “Click here to activate the terminal”.

3. Your code should run automatically.

4. Click the button again to rerun your code.

5. You can resize the Terminal window.

Some shortcuts…

There are a couple things you can do to make copying your code from one
page to another easier.

1) Ctrl + A

2) Ctrl + C

3) Ctrl + V

Pressing these keys together will select all the text on a page

Pressing these keys together will copy anything that’s selected

Pressing these keys together will paste anything you’ve copied

Need help with EdStem?

There is a section at the top of your workbook that explains how to use
EdStem if you get stuck and need a reminder!

It’s called 0: Intro to EdStem

Go to Part 0 and have a look!

Project time!

You now know all about EdStem!

You should now sign up and join our
EdStem class. You should also have a look

at part 0 of your workbook

 Remember the tutors will be around to help!

Intro to Caesar Ciphers

Let’s get encrypting!

What is a cipher?

A cipher is a way to write a message so that no one
else can read it!

Unless they know the secret key!

Examples of ciphers

If you’ve ever made up your own secret language or
made notes to your friends so that other people can’t

read them, you’ve made a cipher!

For example:
gnidoc evol i

Can you figure out what this says?

Examples of ciphers

If you’ve ever made up your own secret language or
made notes to your friends so that other people can’t

read them, you’ve made a cipher!

For example:
gnidoc evol i

Can you figure out what this says?

It says I love coding backwards!

So what’s a Caesar Cipher?

It’s a cypher that Julius Caesar used in ancient Rome
to send secret messages to his armies!

Let’s learn how it works!

Caesar Cipher

Make a Cipher Wheel

● Cut out green circle
● Cut out purple circle
● Put small circle on top of big circle

matching centres
● Secure together with centre split pin
● Spin inside circle of letters around

Caesar Cipher Wheel template in Workshop Material folder

Shifting letters

A Caesar Cipher works by shifting letters in the alphabet
so that they line up with new letters.

For example if we were to shift everything by 3 it would
look like this:

Line up the ‘a’ on both wheels and then turn the inside
wheel 3 letters anti-clockwise so that you have your

letters lining up like this!

a b c d e f g h i j k l m n o p q r s t u v w x y z

d e f g h i j k l m n o p q r s t u v w x y z a b c

Encrypting

Now, let’s encrypt I love coding using the wheel

For our Caesar Cipher we take each letter and replace it
with the ‘shifted’ letter

So, let’s start with the letter ‘i’
What new letter should we use
to replace it?

>>> Find letter i on the outside wheel and replace it with
it’s matching letter on the inside wheel = the letter ‘l’

Encrypting

Now, let’s encrypt I love coding using the wheel

For our Caesar Cipher we take each letter and replace it
with the ‘shifted’ letter

So, let’s start with the letter ‘i’
What new letter should we use
to replace it?

>>> Find letter i on the outside wheel and replace it with
it’s matching letter on the inside wheel = the letter ‘l’

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

r

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

r

g

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

r

g

l

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

r

g

l

q

Writing the whole message!

Let’s do the rest of the message together

I love coding

l Is replaced with

o Is replaced with

v Is replaced with

e Is replaced with

c Is replaced with

o Is replaced with

d Is replaced with

i Is replaced with

n Is replaced with

g Is replaced with

o

r

y

h

f

r

g

l

q

j

Secret Message

So our secret encrypted message is
L oryh frglqj

That’s a lot harder to figure out than it just being
backwards!

Encrypt your own name!
Using a key of minus 1 (so A=Z) (Jessica = Idrrhbz)
Write your name on the blank tag in name badge!

Decrypting

Writing secret messages isn’t any fun if you can’t figure
out what they say!

Luckily you can also use your cipher wheel to decrypt
a secret message.

How do you think we can do that?

What information do we need to know in order to
decrypt a secret message?

It’s the key!

To decrypt a secret message we need to know the
amount that we shifted the wheel when we encrypted it.
That number is called the key!

Once we know the key we can just turn our wheel
and read the wheel from the inside out!

Find the letter on the inside wheel and replace it with it’s
matching letter on the outside wheel

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

o

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

o

d

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

o

d

i

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

o

d

i

n

i

Let’s check it works!

l Is replaced with

o Is replaced with

r Is replaced with

y Is replaced with

h Is replaced with

f Is replaced with

r Is replaced with

g Is replaced with

l Is replaced with

q Is replaced with

j Is replaced with

l

o

v

e

c

o

d

i

n

g

i

Another way to decrypt

● Another way to decrypt a message is to change the key
value to become the negative of the encryption key value

● We will use this method in our code
● This is because to decrypt a message we need to shift the

alphabet the opposite way.
● A negative key value means you turn your inner purple

wheel to the right (clockwise)

Key

Your Turn!

Try doing Lessons 1-3
using your Caesar Cipher wheels!

Your tutors are here to help you if you get
stuck

Strings, Ints & Modulo

Strings!

Strings are a sequence of characters in python.
Strings are created by enclosing characters inside
"quotes"

>>> alphabet = 'abcdefghijklmnopqrstuvwxyz' creates a string variable
that contains the letters of the alphabet

We can add strings together
>>> "abc" + “def” = “abcdef”

Strings

We can get individual letters from a string using indexes.

>>> yum = "chocolate"
>>> yum[0]
'c'
>>> yum[5]
'l'
>>> yum[-1]
'e'
>>> yum[500]
IndexError: string index out of range

Computers start counting from 0, not 1!

Strings

We can get individual letters from a string using indexes.

>>> yum = "chocolate"
>>> yum[0]
'c'
>>> yum[5]
'l'
>>> yum[-1]
'e'
>>> yum[500]
IndexError: string index out of range

Computers start counting from 0, not 1!

Strings

We can get individual letters from a string using indexes.

>>> yum = "chocolate"
>>> yum[0]
'c'
>>> yum[5]
'l'
>>> yum[-1]
'e'
>>> yum[500]
IndexError: string index out of range

Computers start counting from 0, not 1!

Strings

We can get individual letters from a string using indexes.

>>> yum = "chocolate"
>>> yum[0]
'c'
>>> yum[5]
'l'
>>> yum[-1]
'e'
>>> yum[500]
IndexError: string index out of range

Computers start counting from 0, not 1!

Strings

We can get individual letters from a string using indexes.

>>> yum = "chocolate"
>>> yum[0]
'c'
>>> yum[5]
'l'
>>> yum[-1]
'e'
>>> yum[500]
IndexError: string index out of range

Computers start counting from 0, not 1!

Searching Strings

If we want to find where a letter is in a string, we look it up
using index()
>>> yum = "chocolate"
>>> yum.index('h')
1
>>> yum.index('o')
2
>>> yum.index('z')
ValueError: substring not found

Only the index of the first ‘o’ is returned!

Searching Strings

If we want to find where a letter is in a string, we look it up
using index()
>>> yum = "chocolate"
>>> yum.index('h')
1
>>> yum.index('o')
2
>>> yum.index('z')
ValueError: substring not found

Only the index of the first ‘o’ is returned!

Searching Strings

If we want to find where a letter is in a string, we look it up
using index()
>>> yum = "chocolate"
>>> yum.index('h')
1
>>> yum.index('o')
2
>>> yum.index('z')
ValueError: substring not found

Only the index of the first ‘o’ is returned!

Searching Strings

If we want to find where a letter is in a string, we look it up
using index()
>>> yum = "chocolate"
>>> yum.index('h')
1
>>> yum.index('o')
2
>>> yum.index('z')
ValueError: substring not found

Only the index of the first ‘o’ is returned!

Test if character in string

We can test if a character is in a string!

>>> yum = "chocolate"
>>> if ‘a’ in yum:

Maths on Indexes!

We can use any sort of int as an index, including the result of
an expression or maths equation!

>>> yum = "chocolate"
>>> len(yum)
9
>>> yum[9 - 1]
'e'

Maths on Indexes!

We can use any sort of int as an index, including the result of
an expression or maths equation!

>>> yum = "chocolate"
>>> len(yum)
9
>>> yum[9 - 1]
'e'

Maths on Indexes!

We can use any sort of int as an index, including the result of
an expression or maths equation!

>>> yum = "chocolate"
>>> len(yum)
9
>>> yum[9 - 1]
'e'

Modulo %

Modulo % is a maths operation
% gives the remainder of a division

You’ll need to use it in your code!

● 10 % 8 = 2 (10 divided by 8 is 1 with remainder 2)
● 20 % 7 = 6 (20 divided by 7 is 2 with remainder 6)
● 5 % 6 = 5 (5 divided by 6 is 0 with remainder 5)

Project time!

You now know all about strings, ints and
modulo!

Let’s put what we learnt into our project
Try Lessons 3 - 6

 The tutors will be around to help!

Intro to Vigenere Ciphers

Caesar Cipher

So now you know what a Caesar Cipher is, let’s look
at a more complicated cipher!

A Caesar Cipher uses just 1 key to encrypt and
decrypt the message, a Vigenere cypher uses a

whole word as the key!

The keyword

Let’s see how it uses a whole word by doing an example
together!

Let’s use the keyword
pizza

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

15

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

15 8

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

15 8 25

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

15 8 25 25

Now we take the keyword and we split it into a bunch of
keys!

Each letter of the alphabet equals a different number
(a=0, b=1, c=2 etc.)

Now we change our keyword into a bunch of different keys
by replacing each letter with its number in the alphabet

Splitting it into keys

p i z z a

15 8 25 25 0

Loop the word

Let’s try encrypting a message with our keyword
using a Vigenere cipher now!

I love coding

Each letter in our message will line up with a letter in
our keyword and we will keep looping the keyword

like this:

i l o v e c o d i n g

p i z z a p i z z a p

Using the numbers

Now we replace each letter of our keyword with the
numbers that we worked out before:

Next we just shift each letter in our message like we do
with a Caesar Cipher but with the key that it lines up

with.

What key does the letter C use?

i l o v e c o d i n g

15 8 25 25 0 15 8 25 25 0 15

Using the numbers

Now we replace each letter of our keyword with the
numbers that we worked out before:

Next we just shift each letter in our message like we do
with a Caesar Cipher but with the key that it lines up

with.

What key does the letter C use?

i l o v e c o d i n g

15 8 25 25 0 15 8 25 25 0 15

15

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

w

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

w

c

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

w

c

h

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

w

c

n

h

Making the secret message

i Using key: 15 Is replaced with

l Using key: 8 Is replaced with

o Using key: 25 Is replaced with

v Using key: 25 Is replaced with

e Using key: 0 Is replaced with

c Using key: 15 Is replaced with

o Using key: 8 Is replaced with

d Using key: 25 Is replaced with

i Using key: 25 Is replaced with

n Using key: 0 Is replaced with

g Using key: 15 Is replaced with

x

t

n

u

e

r

w

c

v

n

h

Secret Message

So our secret encrypted message is x tnue rwchnv

To decrypt it you do the same thing with each letter and
key that you did to decrypt in the Caesar cipher

● change the key value to become the negative of the
encryption key value

● turn the wheel backwards (clockwise) to undo the
encryption and get the secret message

● this shifts the alphabet the opposite way to what we
did to encrypt the message

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

o

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

o

d

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

o

d

i

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

o

d

i

n

i

Turn it back!

x Using key: 15 Is replaced with

t Using key: 8 Is replaced with

n Using key: 25 Is replaced with

u Using key: 25 Is replaced with

e Using key: 0 Is replaced with

r Using key: 15 Is replaced with

w Using key: 8 Is replaced with

c Using key: 25 Is replaced with

h Using key: 25 Is replaced with

n Using key: 0 Is replaced with

v Using key: 15 Is replaced with

l

o

v

e

c

o

d

i

n

g

i

Your Turn!

Now you try on your own!

Try doing Lesson 1 of the
second workbook!
https://edstem.org/au/join/zCfRbq

Your tutors are here to help you if you get
stuck

https://edstem.org/au/join/zCfRbq

Lists

Lists

But we don’t store it on
lots of little pieces of
paper!

We put it in one big
shopping list!

BreƄƇ Ice Cƕƈƞƪ

ChoƆƒƩƞte PizƝƄ

● BreƄƇ
● ChoƆƒƩƞte
● Ice Cƕƈƞƪ
● PizƝƄ

When we go shopping, we write down what we want to buy!

Lists

It would be annoying to store it separately when we code too!
>>> shopping_item1 = "Bread"
>>> shopping_item2 = "Chocolate"
>>> shopping_item3 = "Ice Cream"
>>> shopping_item4 = "Pizza"

So much repetition!!

Instead we use a python list!
>>> shopping_list = ["Bread", "Chocolate", "Ice Cream",
"Pizza"]

You can put (almost) anything into a list

● You can have a list of integers
>>> primes = [1, 2, 3, 5, 11]

● You can have a list of strings
>>> mixture = ["one", "two", "three"]

● Every element of a list should be the same (eg
integer, string). You should be able to treat every
element of the list the same way.

List anatomy

shopping_list = ["Bread", "Chocolate", "Ice Cream", "Pizza"]

Stored in the
variable

shopping_list

Has square
brackets

Made up of
different items

(these are strings)

The items are
separated by

commas

Accessing Lists!

Make a list of your favourite things
faves = ['books', 'butterfly', 'chocolate', 'skateboard']

The favourites list holds four strings in order.

We can count out the items using index numbers!

0 1 2 3

Remember: Indices start from zero!

Accessing Lists

We access the items in a list with an index such as [0]:
>>> faves[0]
'books'

What code do you need to access the second item in the list?

Going Negative

Negative indices count backwards from the end of the list

>>> faves = ['books', 'butterfly', 'chocolate',
'skateboard']
>>> faves[-1]
'skateboard'

What would faves[-3] return?

Falling off the edge

Python complains if you try to go past the end of a list
>>> faves = ['books', 'butterfly', 'chocolate',
'skateboard']
>>> faves[4]

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Updating items!

We can also update things in a list:
>>> faves = ['books', 'butterfly',
'chocolate', 'skateboard']
>>> faves[1]
'butterfly'
>>> faves[1] = 'kittens'
>>> faves[1]
'kittens'

Updating items

What if we decided that we didn’t like chocolate anymore, but
loved lollipops?

What does this list look like now?

Removing items!

We can remove items from the list if they’re no longer needed!

What if we decided that we didn’t like butterflies anymore?
>>> faves.remove('butterfly')

What does this list look like now?

Adding items!

We can also add new items to the list!

What if we decided that we also liked programming?
>>> faves.append('programming')

What does this list look like now?

What can you do with a list?

● Define an empty list to add to in your code
>>> songs = []

● Loop through a list

 >>> odd_numbers = [1, 3, 5, 7]
 >>> for i in odd_numbers:
 print(i)

Looping through a list

We can use a for statement to loop through a list

What if we wanted to print out all our favourites?
>>> for object in faves:
 print('I like ' + object)

 'books'
'lollipops'
'skateboard'
'programming'

List of lists!

You really can put anything in a list, even more lists!

We could use a list of lists to store different sports teams!
tennis_pairs = [

["Alex", "Emily"], ["Kass", "Annie"], ["Amara", "Viv"]

]

Get the first pair in the list
>>> first_pair = tennis_pairs[0]
>>> first_pair

["Alex", "Emily"]

Now we have the first pair handy, we can get the first the first player of the
first pair
>>> fist_player = first_pair[0]
>>> first_player
"Alex"

Project time!

You now know all about lists!

Let’s put what we learnt into our project.
Try Lesson 2 of the second workbook!

 The tutors will be around to help!

Functions!

Simpler, less repetition, easier to read code!

How functions fit together!

Functions are like factories!

Running a factory doesn’t mean doing all the work
yourself, you can get other factories to help you out!

Your main factory!

Timber Mill

Metal Worker

Cupcake factory

How functions fit together!

Functions are like factories!

Asking other factories to do some work for you makes
your main task simper. You can focus on the
assembly!

Your main factory!I’d like to place an
order for a piece
of wood. 2 meters
by 1.5 meters.

Sure thing!
Coming right
away!

Order

Delivery

Order

Delivery

Can I order 4
metal poles
please! 80cm long.

Timber Mill

Cupcake factory

Metal Worker

It will be
delivered
straight away!

How functions fit together!

Functions are like factories!
Your main factory!

Timber Mill

Metal Worker

Cupcake factory

Look at this beautiful table
I made!

Outsourcing made it simple!

How functions fit together!

You can write a bunch of

helpful functions to

simplify your main goal!

Your main code!
Helps with printing

nicely

Does
calculationsUses stats

to make
decisions

You can write these

once and then use

them lots of times!

They can be

anything you like!

Don’t reinvent the wheel

We’re already familiar with some
python in built functions like print and

input!

There’s lots of functions python
gives us to save us reinventing the

wheel!
For instance we can use len to get the
length of a string, rather than having
to write code to count every letter!

>>> name = "Renee"
>>> len(name)
5

>>> int("6")
6

>>> str(6)
"6"

Try these:

>>> len("Hello world")
11

Defining your own functions

Built in functions are great! But sometimes we want
custom functions!

Defining our own functions means:

● We cut down on repeated code

● Nice function names makes our code clear and easy to read

● We can move bulky code out of the way

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

Defining your own functions

Then you can use your function by
calling it!

def cat_print():
 print("""
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M """)

cat_print()
cat_print()

 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M
 #
 #
 #
 ^..^ #####
 =TT= ;
 #########
 # # # #
 M M M M

Which will do this!

When using a function in a script make
sure you define the function first.

It doesn’t matter if you call it from inside
another function though!

Pretty Word Printer

Create a new file and make a pretty word printer! It can
print any word you like.
1. Define a function called pretty_word_print

2. Set a variable called word

3. Have the function print out some decorative marks as long as the word
above and below the word like these examples:

4. Call your function in your file as many times as you like!

~~~
GPN
~~~

Hello World

Functions often need extra information

Functions are more useful if we can change what they do
We can do this by giving them arguments (aka parameters)

Here, we give the hello() function a name

Any string will work

>>> def hello(person):
 print('Hello, ' + person + ', how are you?')
>>> hello('Alex')
Hello, Alex, how are you?

>>> hello('abcd')
Hello, abcd, how are you?

Functions can take multiple arguments

Often we want to work with multiple pieces of information.

You can actually have as many parameters as you like!

This function takes two numbers, adds them together and prints
the result.

>>> def add(x, y):
 print(x + y)
>>> add(3, 4)
7

Arguments stay inside the function

The arguments are not able to be accessed outside of the function
declaration.

>>> def hello(person):
print('Hello, ' + person + '!')

>>> print(person)
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
NameError: name 'person' is not defined

Variables stay inside the function

Neither are variables declared inside the function. They are local variables.

>>> def add(x, y):
z = x + y
print(z)

>>> add(3, 4)
7
>>> z
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'z' is not defined

Global variables are not affected

Changing a variable in a function only changes it inside the function.

>>> z = 1
>>> def add(x, y):
 z = x + y

print(z)
>>> add(3, 4)
7

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):

z = x + y
print(z)

>>> add(3, 4)
7

>>> print(z)

Global variables are not affected

Changing a variable in a function only changes it inside the function.

What's the value of z now?

>>> z = 1
>>> def add(x, y):

z = x + y
print(z)

>>> add(3, 4)
7

>>> print(z)
1

Recap: A function signature

def add(x, y):

>>> add(2, 3)

the def keyword function name
function arguments

function name function arguments

definition

callsite

Pretty Word Printer

At the moment our pretty word printer always prints the same word. Let’s
fix that!

Edit your pretty word printer function:

1. Change your function so it takes in an argument called word
2. Remove the line where you set word as a variable, now we are passing

in word
3. Change the places where you called your pretty word printer, so now

you pass in a word as an argument (make sure you pass in a string).
4. Try calling your function multiple times, but with different words

Hi everyone

Coding is cool

pretty_word_print("Hi everyone")
pretty_word_print("Coding is cool")

Calling your function with these
arguments might look like this:

Giving something back

At the moment our function just does a thing, but it‘s not able to give
anything back to the main program.

Currently, we can’t use the result of add()

sum has no value!

>>> def add(x, y):
print(x + y)

>>> sum = add(1, 3)
4
>>> sum

Giving something back

Using return in a function immediately returns a
result.

>>> def add(x, y):
... z = x + y
... return z

>>> sum = add(1, 3)
>>> sum
4

Giving something back

When a function returns something, the control is passed back to the
main program, so no code after the return statement is run.

Here, the print statement after the return never gets run.

>>> def add(x, y):
print('before the return')
z = x + y
return z
print('after the return')

>>> sum = add(1, 3)
before the return
>>> sum
4

Project time!

Now you know how to build function!

Now try Lessons 3 - 6 of
the second workbook!

 The tutors will be around to help!

Sets & Files

Sets

Sets are like lists without an order and without repetition.
They’re good when you only want to store one of each thing
but don’t care where they are.

Let’s say you want to store your card hand in poker. The order
of cards is not important; you only care if a card is in your
hand or not! A set lets you look this up quickly.

Sets

1. Create a set

>>> hand = set()

2. Add to the set

>>> hand.add('A hearts')
>>> hand.update(['7 diamonds', 'K clubs'])
>>> hand
{'K clubs', '7 diamonds', 'A hearts'}

Sets

3. Check in set

>>> if '7 diamonds' in hand:
print('Play card')

Play card

4. Remove from set

>>> hand.remove('A hearts')
>>> hand
{'K clubs', '7 diamonds'}

Sets cannot contain things twice

5. Adding the same element again does not change the set

>>> hand
{'K clubs', '7 diamonds'}
>>> hand.add('K clubs')

>>> hand
{'K clubs', '7 diamonds'}

We cannot have two of the same card in our hand.

Filing it away!

What happens if we want to use
different data in our program? What
if that data is too big to write in with
the keyboard?

We’d have to change our code!!

It would be better if we could keep
all our data in a file and just be able
to pick and choose what file we
wanted to play today!

people.txt

Aleisha,brown,black,hat
Brittany,blue,red,glasses
Charlie,green,brown,glasses
Dave,blue,red,glasses
Eve,green,brown,glasses
Frankie,hazel,black,hat
George,brown,black,glasses
Hannah,brown,black,glasses
Isla,brown,brown,none
Jackie,hazel,blonde,hat
Kevin,brown,black,hat
Luka,blue,brown,none

Opening files!

To get access to the stuff inside a file in python we need to open it!

That doesn’t mean clicking on the little icon!

my_file = open("test.txt")

You’ll now be able to read the things in my_file

If your file is in the same location as your code you can just use the name!

A missing file causes an error

Here we try to open a file that doesn't exist:

f = open('missing.txt')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or
directory: 'missing.txt'

You can read a whole file into a string

>>> my_file = open('haiku.txt')
>>> my_string = f.read()
>>> my_stirng
'Wanna go outside.\nOh NO!
Help! I got outside!\nLet me
back inside!

>>> print(my_stirng)
Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

haiku.txt

Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

You can also read in one line at a time

You can use a for loop to only get 1 line at a time!

my_file = open('haiku.txt')
for line in my_file:
 print(line)

Wanna go outside.

Oh NO! Help! I got outside!

Let me back inside!

Why is there an extra blank line each time?

Chomping off the newline

The newline character is represented by '\n':

print('Hello\nWorld')
Hello
World

We can remove it from the lines we read with .strip()

x = 'abc\n'
x.strip()
'abc'

x.strip() is safe as lines without newlines will be unaffected

Reading and stripping!

for line in open('haiku.txt'):
 line = line.strip()
 print(line)

Wanna go outside.
Oh NO! Help! I got outside!
Let me back inside!

No extra lines!

Using with!

This is a special trick for opening files!

with open("words.txt") as f:
for line in f:

print(line.strip())

It automatically closes your file for you!
It’s good when you are writing files in python!

Project time!

Now you know how to use files and sets!

Go file your knowledge into the third
workbook!

https://edstem.org/au/join/aDq4eg
The tutors will be around to help!

https://edstem.org/au/join/aDq4eg

