
Girls’ Programming Network

Bop It with micro:bits!

This project was created by GPN Australia for GPN
sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney, Canberra

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Renee Noble
Courtney Ross
Alex McCulloch
Belinda Wong

Rowena Stewart
Kim Apted

Kassandra di Bona
Jennifer Henoch

Mikaela Goldstein
Michelle McPartland

Sheree Pudney

| 1

Part 0: Setting up

Task 0.1: micro:bits and pieces

Let’s set up the micro:bit for programming today! You should have:

- 1 micro:bit chip
- 1 USB cable

1. Connect the small end of the USB cord to the middle port of the micro:bit
2. Connect the big end of the cord to your computer
3. Go to python.microbit.org

Task 0.2: Micro playground

First we’re going to play around with the displays onmicrobit.org and test them on
our micro:bits.

1. Make sure from microbit import * is at the top of your code.
2. Change the code under the while True: loop to display a duck and scroll your name

instead
3. Click the ‘Send to micro:bit’ button to try this out. Then follow the steps on the

screen.
4. Try this out with other words and pictures.

Hint

Don’t forget you have cheat sheets to help you code!
Remember to indent the code below the while loop!

CHECKPOINT

If you can tick all of these off you can go to Part 1:
☐ You are have connected your micro:bit to the computer

☐ You can display different pictures and words

| 2

Today’s Project Plan - Bop It
We’re going to make a Bop It game!

It will prompt the user to press A or B to get points! Get as
many points as you can in the time limit.

Start off the game by showing a starting image!

List your actions, and choose a random action to
be the first move!

Display different images on the screen depending
on what action you chose!

Add a loop to make it choose and display actions
over and over again!

Make the game wait for you to complete the action.
Get a smiley and new move when you’re correct!

Add scores to the game and show the final score
at the end of the game!

Once your base game works add cool extensions!
There is extension sounds, making your own buttons out of foil, using
radio communication to make multiplayer games and many more!!

| 3

Part 1: Ready! Set! Go!

Task 1.1: Name your file!

Now you’re used to working with your micro:bit, let’s start working on the project!

1. On your Python Editor onmicrobit.org. At the top of the page, edit your project
name to be ‘bop_it’.

2. Delete all the code except for from microbit import *

3. At the top of the file, add a new line (above the import line) and use a comment to
write your name.

Hint

Remember comments start with a #
Comments don’t actually do anything - they are just notes!

Task 1.2: Starting your game

To show that the game is starting, let’s show a target image for 1
second!

1. In a new line below the import statement, use display.show()
to show a target. (called Image.TARGET)

2. Make the program sleep for 1000milliseconds.

3. Then clear the display with display.clear()

| 4

CHECKPOINT

If you can tick all of these off you can go to Part 2:
☐ Your program shows a target at the start of the game for 1

second and then clears the display.
☐ You tried it on your real life micro:bit

| 5

Part 2: Choosing a move

Task 2.1: Making a list of actions

We need to make a list of actions to refer to later.

1. At the end of your code, create a list called actions.

2. Inside the list store the two actions "press a" and "press b".

Hint

Remember a list looks like this:
fave_foods = ["pizza", "curry", "nutella", "omelette"]

Task 2.2: Get random

To randomly select actions in our game we’ll need to import a special library.

Underneath from microbit import *, add a new line of code that says import
random

Task 2.3: Selecting the next action

Now we’ll use the library to choose a move from our list of actions.

1. On a new line after our list of actions, create a variable called action.

2. Choose a random action from the list of actions and assign it to action.

3. Then print the action so we can see what it is.

It will print to the serial under the simulator micro:bit (make sure you click “show serial
to see it!)

| 6

Hint

Remember we can choose something randomly from a list like this:
fave_foods = ["pizza", "curry", "nutella", "omelette"]
dinner = random.choice(fave_foods)

Task 2.4: Check that it works!

Now you need to run your program a few times to check that it is working!

1. Run your code multiple times. See what action it prints out.

Do you get different actions? You might get the same one a few times in a row.

CHECKPOINT

If you can tick all of these off you can go to Part 3:
☐ You have a list of actions

☐ You choose an action using random

☐ You have the next action stored in a variable

☐ You have a print statement that prints out the action

| 7

Part 3: Light it up!

Task 3.1: What’s your action?

In part 2, you made two actions your game can choose from.

Do you remember what they were called?

Write their names down below:

1) …………………………………………….

2) …………………………………………….

Task 3.2:

We want to point to the button the player should press.

Which action will we show for each of these images?

Image.ARROW_W Image.ARROW_E

Action: ………………………. Action: ……………………….

| 8

Task 3.3: Giving the first action a picture

Let’s check what action was selected and display a picture!

1. At the bottom of your code, create an if statement that checks whether the
action the computer chose is "press a".

2. Inside the if statement, use display.show() to show the arrow that points to
button A.Make sure it’s indented.

Hint

Remember if statements have indentation. Here’s an example about the weather:

if raining == True:
print ('oh no!')

Task 3.4: Giving the second action a picture

Now we’ll do the same for the other action

1. Create another if statement underneath the previous one that checks whether
"press b" is the action.

2. Inside this if statement, display an arrow that points to button B.

Task 3.5: Testing time!

Run your code!

1. Check the terminal to see which action was selected.

2. Does it display the correct picture for the randomly chosen action?

3. Run your program multiple times to check both actions!

| 9

CHECKPOINT

If you can tick all of these off you can go to Part 4.

☐ When you run the program, it shows one of the pictures below

Picture 1: Picture 2:

☐ If you run the program multiple times, it shows the other
picture sometimes. (This might take a few goes)

★ BONUS 3.6: Choose your own pictures!★

Waiting for the next lecture? Try adding this bonus feature!!

Instead of showing left and right arrows, let’s choose our own pictures!
● Replace the code that shows the left arrow with Image.SQUARE
● Replace the code that shows the right arrow with Image.HEART

What do you see when you run the program? What if you rerun the program a few
times?

Find more images on themicro:bit Image Cheat Sheet: http://bit.ly/images-microbit

| 10

http://bit.ly/images-microbit

Part 4: The more actions the merrier!

Task 4.1: Looping for 10 seconds

To know when to stop the game, we need to know when it started!

1. In a new line after you randomly choose an action, ask the micro:bit how long
the game has been running for with running_time().

2. Store that value in a variable called start_time.

3. On the next line, create a variable called end_time, set it to start_time plus
10,000 milliseconds (10 seconds). You can change this later if you want a longer
game!

Task 4.2: Here we go again!

Now let’s add the loop that goes until the end_time!

1. Go to the next line after you set the end_time.

2. Add a while loop with a condition that checks that the current running_time()
is less than the end_time.

3. Indent all the code that is below this line (your if statements), so they are inside
the while loop.

Hint

| 11

Your while loop should have a structure similar to this example:

while raining == True:
print ('Raindrops keep falling on my head')

Task 4.3: Wait a second and then change the action

We already show the image for the first action we choose! Let’s wait 500
milliseconds, then choose a new action.

1. Make a new line below your second if statement. It should be indented inside
the while loop, but not inside the last if statement.

2. Tell the program to sleep for 500milliseconds.

3. After the sleep, update the value of action by choosing a new one from the list
of actions again.

Hint

To update a variable, just assign something new to it! You can use the same code you
used in Task 2.3 to pick the first random move.

CHECKPOINT

If you can tick all of these off you can go to Part 5:
☐ Your game runs for 10 seconds

☐ Your game keeps choosing new random actions

☐ Your game updates to the correct picture for the new action

| 12

Part 5: Button Presses

Task 5.1: If A is pressed

If the action is “press a”, then we want to check whether button_a has been
pressed.

1. Create a new line of code after you display the arrow image for the "press a"
action.

2. Create a new if statement to check whether button_a.is_pressed().
Make sure this line is indented inside your existing if statement.

3. Inside the new if statement, display a smiley face to celebrate!

Hint

Nested if statements are tricky! It should look something like this
if weather == "sunny":

if clouds == "white":
display.show(Image.HEART)

Hint - errors with is_pressed

Look at the end of this line of code, notice the brackets at the end:
button_a.is_pressed()

Make sure you include the brackets!
The brackets make it so we call the function and check if the button is pressed!

| 13

Task 5.2: Else, when A is not pressed

When button_a has not been pressed, we should continue the game.

1. Add an else statement for if the button is not being pressed.

2. Inside that else statement, add continue.

Hint

Your if-else statement should have a structure similar to this example:

if raining == True:
print ('oh no!')

else:
print ('Yay!')

Don’t forget that indentation is important!

Task 5.3: Is B Pressed?

Now it’s button_b’s turn!

1. Inside the if statement that checks to see if the action is button_b, add an if
statement that checks to see if button_b.is_pressed().

2. Add an else to the if statement, that has a continue.

CHECKPOINT

If you can tick all of these off you can go to Part 6:
☐ When the action is “press a” and you press button_a, a

smiley face is displayed.
☐ When the action is “press b” and you press button_b, a

smiley face is displayed.
☐ Your game waits on the same move until you press the correct

button.

| 14

Part 6: Scoring

Task 6.1: Let’s get this scoring party started!

Create a variable to keep track of the score.

1. On a new line of code after you set end_time and before your while loop, create
a new variable called score.

2. Set score to the value of 0.

Task 6.2: Get those points!

Every time the correct move is made, add 1 to the score.

1. Go to your if statement where you check if button_a is pressed.

2. On a new line, after where you show the smiley face, add 1 to the score.

3. Repeat for the other action.

Hint - Keeping Count!

When we want to add to an existing variable it looks like this example:

num_apples = 5
num_apples = num_apples + 1

| 15

Task 6.3: How did you do?

Now we need to tell the player how well they did!

1. Go to the very end of your code, after the while loop finishes.

2. Convert the final score to a string and then make it scroll across the display.

Hint - String theory!

To scroll a number on the screen we need to convert it to a string.
We can use str to convert to a string inside our scroll, like this:

fave_num = 317
display.scroll(str(fave_num))

CHECKPOINT

If you can tick all of these off you can go to the
Extensions:
☐ You have a score variable that is set to 0 at the start of the
program.
☐ At the end of the game, the score scrolls across the display.

☐ You have made sure that the score counts to the right number.

| 16

| 17

